def test__repr__(): assert cuStandardScaler().__repr__() == 'StandardScaler()' assert cuMinMaxScaler().__repr__() == 'MinMaxScaler()' assert cuMaxAbsScaler().__repr__() == 'MaxAbsScaler()' assert cuNormalizer().__repr__() == 'Normalizer()' assert cuBinarizer().__repr__() == 'Binarizer()' assert cuPolynomialFeatures().__repr__() == 'PolynomialFeatures()' assert cuSimpleImputer().__repr__() == 'SimpleImputer()' assert cuRobustScaler().__repr__() == 'RobustScaler()' assert cuKBinsDiscretizer().__repr__() == 'KBinsDiscretizer()'
def test_maxabs_scaler_sparse(sparse_clf_dataset): # noqa: F811 X_np, X = sparse_clf_dataset scaler = cuMaxAbsScaler(copy=True) t_X = scaler.fit_transform(X) r_X = scaler.inverse_transform(t_X) assert type(t_X) == type(X) assert type(r_X) == type(t_X) scaler = skMaxAbsScaler(copy=True) sk_t_X = scaler.fit_transform(X_np) sk_r_X = scaler.inverse_transform(sk_t_X) assert_allclose(t_X, sk_t_X) assert_allclose(r_X, sk_r_X)