def test_inverse_transform(orig_label, ord_label, expected_reverted, bad_ord_label): # prepare LabelEncoder le = LabelEncoder() le.fit(orig_label) assert (le._fitted is True) # test if inverse_transform is correct reverted = le.inverse_transform(ord_label) assert (len(reverted) == len(expected_reverted)) assert (len(reverted) == len(reverted[reverted == expected_reverted])) # test if correctly raies ValueError with pytest.raises(ValueError, match='y contains previously unseen label'): le.inverse_transform(bad_ord_label)
def test_empty_input(empty, ord_label): # prepare LabelEncoder le = LabelEncoder() le.fit(empty) assert (le._fitted is True) # test if correctly raies ValueError with pytest.raises(ValueError, match='y contains previously unseen label'): le.inverse_transform(ord_label) # check fit_transform() le = LabelEncoder() transformed = le.fit_transform(empty) assert (le._fitted is True) assert (len(transformed) == 0)