コード例 #1
0
    def setUp(self):
        if self.stream == 'null':
            self.stream = cupy.cuda.Stream.null
        elif self.stream == 'new':
            self.stream = cupy.cuda.Stream()

        self.my_sum = _core.ReductionKernel('T x', 'T out', 'x', 'a + b',
                                            'out = a', '0', 'my_sum')
コード例 #2
0
    def getnnz(self, axis=None):
        """Returns the number of stored values, including explicit zeros.

        Args:
            axis: Not supported yet.

        Returns:
            int: The number of stored values.

        """
        if axis is not None:
            raise NotImplementedError(
                'getnnz over an axis is not implemented for DIA format')

        m, n = self.shape
        nnz = _core.ReductionKernel(
            'int32 offsets, int32 m, int32 n', 'int32 nnz',
            'offsets > 0 ? min(m, n - offsets) : min(m + offsets, n)', 'a + b',
            'nnz = a', '0', 'dia_nnz')(self.offsets, m, n)
        return int(nnz)
コード例 #3
0
import cupy
import cupyx.scipy.fft

from cupy import _core
from cupy._core import _routines_math as _math
from cupy._core import fusion
from cupy.lib import stride_tricks

import numpy

_dot_kernel = _core.ReductionKernel('T x1, T x2', 'T y', 'x1 * x2', 'a + b',
                                    'y = a', '0', 'dot_product')


def _choose_conv_method(in1, in2, mode):
    if in1.ndim != 1 or in2.ndim != 1:
        raise NotImplementedError('Only 1d inputs are supported currently')

    if in1.dtype.kind in 'bui' or in2.dtype.kind in 'bui':
        return 'direct'

    if _fftconv_faster(in1, in2, mode):
        return 'fft'

    return 'direct'


def _fftconv_faster(x, h, mode):
    """
    .. seealso:: :func: `scipy.signal._signaltools._fftconv_faster`
コード例 #4
0
ファイル: add_remove.py プロジェクト: the-lay/cupy
            data are repeated in the order that they are stored in memory.

    .. seealso:: :func:`numpy.resize`
    """
    if numpy.isscalar(a):
        return cupy.full(new_shape, a)
    a = cupy.asarray(a)
    if a.size == 0:
        return cupy.zeros(new_shape, dtype=a.dtype)
    out = cupy.empty(new_shape, a.dtype)
    _resize_kernel(a, a.size, out)
    return out


_first_nonzero_krnl = _core.ReductionKernel('T data, int64 len', 'int64 y',
                                            'data == T(0) ? len : _j',
                                            'min(a, b)', 'y = a', 'len',
                                            'first_nonzero')


def trim_zeros(filt, trim='fb'):
    """Trim the leading and/or trailing zeros from a 1-D array or sequence.

    Returns the trimmed array

    Args:
        filt(cupy.ndarray): Input array
        trim(str, optional):
            'fb' default option trims the array from both sides.
            'f' option trim zeros from front.
            'b' option trim zeros from back.