コード例 #1
0
ファイル: _distributions.py プロジェクト: CosmosHua/cupy
def logistic(loc=0.0, scale=1.0, size=None, dtype=float):
    """Logistic distribution.

    Returns an array of samples drawn from the logistic distribution. Its
    probability density function is defined as

    .. math::
       f(x) = \\frac{e^{-(x-\\mu)/s}}{s(1+e^{-(x-\\mu)/s})^2}.

    Args:
        loc (float): The location of the mode :math:`\\mu`.
        scale (float): The scale parameter :math:`s`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the logistic distribution.

    .. seealso::
        :func:`numpy.random.logistic`
    """
    rs = _generator.get_random_state()
    return rs.logistic(loc, scale, size, dtype)
コード例 #2
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def pareto(a, size=None, dtype=float):
    """Pareto II or Lomax distribution.

    Returns an array of samples drawn from the Pareto II distribution. Its
    probability density function is defined as

    .. math::
        f(x) = \\alpha(1+x)^{-(\\alpha+1)}.

    Args:
        a (float or array_like of floats): Parameter of the Pareto II
            distribution :math:`\\alpha`.
        size (int or tuple of ints): The shape of the array. If ``None``, this
            function generate an array whose shape is `a.shape`.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the Pareto II distribution.

    .. seealso:: :meth:`numpy.random.pareto
                 <numpy.random.mtrand.RandomState.pareto>`
    """
    rs = _generator.get_random_state()
    x = rs.pareto(a, size, dtype)
    return x
コード例 #3
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def zipf(a, size=None, dtype=int):
    """Zipf distribution.

    Returns an array of samples drawn from the Zipf distribution. Its
    probability mass function is defined as

    .. math::
        f(x) = \\frac{x^{-a}}{ \\zeta (a)},

    where :math:`\\zeta` is the Riemann Zeta function.

    Args:
        a (float): Parameter of the beta distribution :math:`a`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.int32` and
            :class:`numpy.int64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the Zipf distribution.

    .. seealso::
        :meth:`numpy.random.zipf
        <numpy.random.mtrand.RandomState.zipf>`
    """
    rs = _generator.get_random_state()
    return rs.zipf(a, size=size, dtype=dtype)
コード例 #4
0
ファイル: _distributions.py プロジェクト: CosmosHua/cupy
def normal(loc=0.0, scale=1.0, size=None, dtype=float):
    """Returns an array of normally distributed samples.

    Args:
        loc (float or array_like of floats): Mean of the normal distribution.
        scale (float or array_like of floats):
            Standard deviation of the normal distribution.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Normally distributed samples.

    .. seealso:: :func:`numpy.random.normal`

    """
    rs = _generator.get_random_state()
    if size is None and any(isinstance(arg, cupy.ndarray)
                            for arg in [scale, loc]):
        size = cupy.broadcast_arrays(loc, scale)[0].shape
    x = rs.normal(0, 1, size, dtype)
    cupy.multiply(x, scale, out=x)
    cupy.add(x, loc, out=x)
    return x
コード例 #5
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def noncentral_f(dfnum, dfden, nonc, size=None, dtype=float):
    """Noncentral F distribution.

    Returns an array of samples drawn from the noncentral F
    distribution.

    Reference: https://en.wikipedia.org/wiki/Noncentral_F-distribution

    Args:
        dfnum (float): Parameter of the noncentral F distribution.
        dfden (float): Parameter of the noncentral F distribution.
        nonc (float): Parameter of the noncentral F distribution.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the noncentral F distribution.

    .. seealso::
        :meth:`numpy.random.noncentral_f
        <numpy.random.mtrand.RandomState.noncentral_f>`
    """
    rs = _generator.get_random_state()
    return rs.noncentral_f(dfnum, dfden, nonc, size=size, dtype=dtype)
コード例 #6
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def dirichlet(alpha, size=None, dtype=float):
    """Dirichlet distribution.

    Returns an array of samples drawn from the dirichlet distribution. Its
    probability density function is defined as

    .. math::
        f(x) = \\frac{\\Gamma(\\sum_{i=1}^K\\alpha_i)} \
            {\\prod_{i=1}^{K}\\Gamma(\\alpha_i)} \
            \\prod_{i=1}^Kx_i^{\\alpha_i-1}.

    Args:
        alpha (array): Parameters of the dirichlet distribution
            :math:`\\alpha`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the dirichlet distribution.

    .. seealso::
        :meth:`numpy.random.dirichlet
        <numpy.random.mtrand.RandomState.dirichlet>`
    """
    rs = _generator.get_random_state()
    return rs.dirichlet(alpha, size, dtype)
コード例 #7
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def weibull(a, size=None, dtype=float):
    """weibull distribution.

    Returns an array of samples drawn from the weibull distribution. Its
    probability density function is defined as

    .. math::
       f(x) = ax^{(a-1)}e^{-x^a}.

    Args:
        a (float): Parameter of the weibull distribution :math:`a`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the weibull distribution.

    .. seealso::
        :meth:`numpy.random.weibull
        <numpy.random.mtrand.RandomState.weibull>`
    """
    rs = _generator.get_random_state()
    return rs.weibull(a, size=size, dtype=dtype)
コード例 #8
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def standard_gamma(shape, size=None, dtype=float):
    """Standard gamma distribution.

    Returns an array of samples drawn from the standard gamma distribution. Its
    probability density function is defined as

    .. math::
       f(x) = \\frac{1}{\\Gamma(k)}x^{k-1}e^{-x}.

    Args:
        shape (array): Parameter of the gamma distribution :math:`k`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the standard gamma distribution.

    .. seealso::
        :meth:`numpy.random.standard_gamma
        <numpy.random.mtrand.RandomState.standard_gamma>`
    """
    rs = _generator.get_random_state()
    return rs.standard_gamma(shape, size, dtype)
コード例 #9
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def triangular(left, mode, right, size=None, dtype=float):
    """Triangular distribution.

    Returns an array of samples drawn from the triangular distribution. Its
    probability density function is defined as

    .. math::
       f(x) = \\begin{cases}
            \\frac{2(x-l)}{(r-l)(m-l)} & \\text{for } l \\leq x \\leq m, \\\\
            \\frac{2(r-x)}{(r-l)(r-m)} & \\text{for } m \\leq x \\leq r, \\\\
            0 & \\text{otherwise}.
          \\end{cases}

    Args:
        left (float): Lower limit :math:`l`.
        mode (float): The value where the peak of the distribution occurs.
            :math:`m`.
        right (float): Higher Limit :math:`r`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the triangular distribution.

    .. seealso::
        :func:`cupy.random.RandomState.triangular`
        :meth:`numpy.random.triangular
        <numpy.random.mtrand.RandomState.triangular>`
    """
    rs = _generator.get_random_state()
    return rs.triangular(left, mode, right, size, dtype)
コード例 #10
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def hypergeometric(ngood, nbad, nsample, size=None, dtype=int):
    """hypergeometric distribution.

    Returns an array of samples drawn from the hypergeometric distribution. Its
    probability mass function is defined as

    .. math::
        f(x) = \\frac{\\binom{m}{n}\\binom{N-m}{n-x}}{\\binom{N}{n}}.

    Args:
        ngood (int or array_like of ints): Parameter of the hypergeometric
            distribution :math:`n`.
        nbad (int or array_like of ints): Parameter of the hypergeometric
            distribution :math:`m`.
        nsample (int or array_like of ints): Parameter of the hypergeometric
            distribution :math:`N`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.int32` and
            :class:`numpy.int64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the hypergeometric distribution.

    .. seealso::
        :meth:`numpy.random.hypergeometric
        <numpy.random.mtrand.RandomState.hypergeometric>`
    """
    rs = _generator.get_random_state()
    return rs.hypergeometric(ngood, nbad, nsample, size, dtype)
コード例 #11
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def rayleigh(scale=1.0, size=None, dtype=float):
    """Rayleigh distribution.

    Returns an array of samples drawn from the rayleigh distribution.
    Its probability density function is defined as

      .. math::
         f(x) = \\frac{x}{\\sigma^2}e^{\\frac{-x^2}{2-\\sigma^2}}, x \\ge 0.

    Args:
        scale (array): Parameter of the rayleigh distribution :math:`\\sigma`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the rayleigh distribution.

    .. seealso:: :meth:`numpy.random.rayleigh
                 <numpy.random.mtrand.RandomState.rayleigh>`
    """
    rs = _generator.get_random_state()
    x = rs.rayleigh(scale, size, dtype)
    return x
コード例 #12
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def geometric(p, size=None, dtype=int):
    """Geometric distribution.

    Returns an array of samples drawn from the geometric distribution. Its
    probability mass function is defined as

    .. math::
        f(x) = p(1-p)^{k-1}.

    Args:
        p (float): Success probability of the geometric distribution.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.int32` and
            :class:`numpy.int64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the geometric distribution.

    .. seealso::
        :func:`cupy.random.RandomState.geometric`
        :meth:`numpy.random.geometric
        <numpy.random.mtrand.RandomState.geometric>`
    """
    rs = _generator.get_random_state()
    return rs.geometric(p, size, dtype)
コード例 #13
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def gumbel(loc=0.0, scale=1.0, size=None, dtype=float):
    """Returns an array of samples drawn from a Gumbel distribution.

    The samples are drawn from a Gumbel distribution with location ``loc``
    and scale ``scale``.
    Its probability density function is defined as

    .. math::
       f(x) = \\frac{1}{\\eta} \
           \\exp\\left\\{ - \\frac{x - \\mu}{\\eta} \\right\\} \
           \\exp\\left[-\\exp\\left\\{-\\frac{x - \\mu}{\\eta} \
           \\right\\}\\right],

    where :math:`\\mu` is ``loc`` and :math:`\\eta` is ``scale``.

    Args:
        loc (float): The location of the mode :math:`\\mu`.
        scale (float): The scale parameter :math:`\\eta`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the Gumbel distribution.

    .. seealso::
        :meth:`numpy.random.gumbel
        <numpy.random.mtrand.RandomState.gumbel>`
    """
    rs = _generator.get_random_state()
    return rs.gumbel(loc, scale, size, dtype)
コード例 #14
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def f(dfnum, dfden, size=None, dtype=float):
    """F distribution.

    Returns an array of samples drawn from the f distribution. Its probability
    density function is defined as

    .. math::
        f(x) = \\frac{1}{B(\\frac{d_1}{2},\\frac{d_2}{2})} \
            \\left(\\frac{d_1}{d_2}\\right)^{\\frac{d_1}{2}} \
            x^{\\frac{d_1}{2}-1} \
            \\left(1+\\frac{d_1}{d_2}x\\right) \
            ^{-\\frac{d_1+d_2}{2}}.

    Args:
        dfnum (float or array_like of floats): Parameter of the f distribution
            :math:`d_1`.
        dfden (float or array_like of floats): Parameter of the f distribution
            :math:`d_2`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the f distribution.

    .. seealso::
        :meth:`numpy.random.f
        <numpy.random.mtrand.RandomState.f>`
    """
    rs = _generator.get_random_state()
    return rs.f(dfnum, dfden, size, dtype)
コード例 #15
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def exponential(scale, size=None, dtype=float):
    """Exponential distribution.

    Returns an array of samples drawn from the exponential distribution. Its
    probability density function is defined as

    .. math::
       f(x) = \\frac{1}{\\beta}\\exp (-\\frac{x}{\\beta}).

    Args:
        scale (float or array_like of floats): The scale parameter
            :math:`\\beta`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the exponential distribution.

    .. seealso::
        :meth:`numpy.random.exponential
        <numpy.random.mtrand.RandomState.exponential>`
    """
    rs = _generator.get_random_state()
    return rs.exponential(scale, size, dtype)
コード例 #16
0
ファイル: _sample.py プロジェクト: zhaohb/cupy
def choice(a, size=None, replace=True, p=None):
    """Returns an array of random values from a given 1-D array.

    Each element of the returned array is independently sampled
    from ``a`` according to ``p`` or uniformly.

    .. note::

       Currently ``p`` is not supported when ``replace=False``.

    Args:
        a (1-D array-like or int):
            If an array-like,
            a random sample is generated from its elements.
            If an int, the random sample is generated as if ``a`` was
            ``cupy.arange(n)``
        size (int or tuple of ints): The shape of the array.
        replace (boolean): Whether the sample is with or without replacement.
        p (1-D array-like):
            The probabilities associated with each entry in ``a``.
            If not given the sample assumes a uniform distribution over all
            entries in ``a``.

    Returns:
        cupy.ndarray: An array of ``a`` values distributed according to
                      ``p`` or uniformly.

    .. seealso:: :meth:`numpy.random.choice
                 <numpy.random.mtrand.RandomState.choice>`

    """
    rs = _generator.get_random_state()
    return rs.choice(a, size, replace, p)
コード例 #17
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def poisson(lam=1.0, size=None, dtype=int):
    """Poisson distribution.

    Returns an array of samples drawn from the poisson distribution. Its
    probability mass function is defined as

    .. math::
        f(x) = \\frac{\\lambda^xe^{-\\lambda}}{k!}.

    Args:
        lam (array_like of floats): Parameter of the poisson distribution
            :math:`\\lambda`.
        size (int or tuple of ints): The shape of the array. If ``None``, this
            function generate an array whose shape is `lam.shape`.
        dtype: Data type specifier. Only :class:`numpy.int32` and
            :class:`numpy.int64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the poisson distribution.

    .. seealso:: :meth:`numpy.random.poisson
                 <numpy.random.mtrand.RandomState.poisson>`
    """
    rs = _generator.get_random_state()
    x = rs.poisson(lam, size, dtype)
    return x
コード例 #18
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def laplace(loc=0.0, scale=1.0, size=None, dtype=float):
    """Laplace distribution.

    Returns an array of samples drawn from the laplace distribution. Its
    probability density function is defined as

    .. math::
       f(x) = \\frac{1}{2b}\\exp\\left(-\\frac{|x-\\mu|}{b}\\right).

    Args:
        loc (float): The location of the mode :math:`\\mu`.
        scale (float): The scale parameter :math:`b`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the laplace distribution.

    .. seealso::
        :meth:`numpy.random.laplace
        <numpy.random.mtrand.RandomState.laplace>`
    """
    rs = _generator.get_random_state()
    return rs.laplace(loc, scale, size, dtype)
コード例 #19
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def chisquare(df, size=None, dtype=float):
    """Chi-square distribution.

    Returns an array of samples drawn from the chi-square distribution. Its
    probability density function is defined as

    .. math::
       f(x) = \\frac{(1/2)^{k/2}}{\\Gamma(k/2)}x^{k/2-1}e^{-x/2}.

    Args:
        df (int or array_like of ints): Degree of freedom :math:`k`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the chi-square distribution.

    .. seealso::
        :meth:`numpy.random.chisquare
        <numpy.random.mtrand.RandomState.chisquare>`
    """
    rs = _generator.get_random_state()
    return rs.chisquare(df, size, dtype)
コード例 #20
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def binomial(n, p, size=None, dtype=int):
    """Binomial distribution.

    Returns an array of samples drawn from the binomial distribution. Its
    probability mass function is defined as

    .. math::
        f(x) = \\binom{n}{x}p^x(1-p)^{n-x}.

    Args:
        n (int): Trial number of the binomial distribution.
        p (float): Success probability of the binomial distribution.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.int32` and
            :class:`numpy.int64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the binomial distribution.

    .. seealso::
        :meth:`numpy.random.binomial
        <numpy.random.mtrand.RandomState.binomial>`
    """
    rs = _generator.get_random_state()
    return rs.binomial(n, p, size, dtype)
コード例 #21
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def beta(a, b, size=None, dtype=float):
    """Beta distribution.

    Returns an array of samples drawn from the beta distribution. Its
    probability density function is defined as

    .. math::
       f(x) = \\frac{x^{\\alpha-1}(1-x)^{\\beta-1}}{B(\\alpha,\\beta)}.

    Args:
        a (float): Parameter of the beta distribution :math:`\\alpha`.
        b (float): Parameter of the beta distribution :math:`\\beta`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the beta distribution.

    .. seealso::
        :meth:`numpy.random.beta
        <numpy.random.mtrand.RandomState.beta>`
    """
    rs = _generator.get_random_state()
    return rs.beta(a, b, size, dtype)
コード例 #22
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def logseries(p, size=None, dtype=int):
    """Log series distribution.

    Returns an array of samples drawn from the log series distribution. Its
    probability mass function is defined as

    .. math::
       f(x) = \\frac{-p^x}{x\\ln(1-p)}.

    Args:
        p (float): Parameter of the log series distribution :math:`p`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.int32` and
            :class:`numpy.int64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the log series distribution.

    .. seealso:: :meth:`numpy.random.logseries
                 <numpy.random.mtrand.RandomState.logseries>`

    """
    rs = _generator.get_random_state()
    return rs.logseries(p, size=size, dtype=dtype)
コード例 #23
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def standard_t(df, size=None, dtype=float):
    """Standard Student's t distribution.

    Returns an array of samples drawn from the standard Student's t
    distribution. Its probability density function is defined as

    .. math::
        f(x) = \\frac{\\Gamma(\\frac{\\nu+1}{2})} \
            {\\sqrt{\\nu\\pi}\\Gamma(\\frac{\\nu}{2})} \
            \\left(1 + \\frac{x^2}{\\nu} \\right)^{-(\\frac{\\nu+1}{2})}.

    Args:
        df (float or array_like of floats): Degree of freedom :math:`\\nu`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the standard Student's t distribution.

    .. seealso::
        :meth:`numpy.random.standard_t
        <numpy.random.mtrand.RandomState.standard_t>`
    """
    rs = _generator.get_random_state()
    return rs.standard_t(df, size, dtype)
コード例 #24
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def negative_binomial(n, p, size=None, dtype=int):
    """Negative binomial distribution.

    Returns an array of samples drawn from the negative binomial distribution.
    Its probability mass function is defined as

    .. math::
        f(x) = \\binom{x + n - 1}{n - 1}p^n(1-p)^{x}.

    Args:
        n (int): Parameter of the negative binomial distribution :math:`n`.
        p (float): Parameter of the negative binomial distribution :math:`p`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.int32` and
            :class:`numpy.int64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the negative binomial distribution.

    .. seealso::
        :meth:`numpy.random.negative_binomial
        <numpy.random.mtrand.RandomState.negative_binomial>`
    """
    rs = _generator.get_random_state()
    return rs.negative_binomial(n, p, size=size, dtype=dtype)
コード例 #25
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def vonmises(mu, kappa, size=None, dtype=float):
    """von Mises distribution.

    Returns an array of samples drawn from the von Mises distribution. Its
    probability density function is defined as

    .. math::
       f(x) = \\frac{e^{\\kappa \\cos(x-\\mu)}}{2\\pi I_0(\\kappa)}.

    Args:
        mu (float): Parameter of the von Mises distribution :math:`\\mu`.
        kappa (float): Parameter of the von Mises distribution :math:`\\kappa`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the von Mises distribution.

    .. seealso::
        :meth:`numpy.random.vonmises
        <numpy.random.mtrand.RandomState.vonmises>`
    """
    rs = _generator.get_random_state()
    return rs.vonmises(mu, kappa, size=size, dtype=dtype)
コード例 #26
0
ファイル: test_generator.py プロジェクト: nvwa-makesi/cupy
 def test_get_random_state_memoized(self):
     _generator._random_states = {self.device_id: 'expected',
                                  self.device_id + 1: 'dummy'}
     rs = _generator.get_random_state()
     assert 'expected' == _generator._random_states[self.device_id]
     assert 'dummy' == _generator._random_states[self.device_id + 1]
     assert 'expected' == rs
コード例 #27
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def wald(mean, scale, size=None, dtype=float):
    """Wald distribution.

    Returns an array of samples drawn from the Wald distribution. Its
    probability density function is defined as

    .. math::
       f(x) = \\sqrt{\\frac{\\lambda}{2\\pi x^3}}\\
           e^{\\frac{-\\lambda(x-\\mu)^2}{2\\mu^2x}}.

    Args:
        mean (float): Parameter of the wald distribution :math:`\\mu`.
        scale (float): Parameter of the wald distribution :math:`\\lambda`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the wald distribution.

    .. seealso::
        :func:`cupy.random.RandomState.wald`
        :meth:`numpy.random.wald
        <numpy.random.mtrand.RandomState.wald>`
    """
    rs = _generator.get_random_state()
    return rs.wald(mean, scale, size, dtype)
コード例 #28
0
ファイル: _distributions.py プロジェクト: twonp168/cupy
def noncentral_chisquare(df, nonc, size=None, dtype=float):
    """Noncentral chisquare distribution.

    Returns an array of samples drawn from the noncentral chisquare
    distribution. Its probability density function is defined as

    .. math::
       f(x) = \\frac{1}{2}e^{-(x+\\lambda)/2} \\
        \\left(\\frac{x}{\\lambda}\\right)^{k/4 - 1/2} \\
        I_{k/2 - 1}(\\sqrt{\\lambda x}),

    where :math:`I` is the modified Bessel function of the first kind.

    Args:
        df (float): Parameter of the noncentral chisquare distribution
            :math:`k`.
        nonc (float): Parameter of the noncentral chisquare distribution
            :math:`\\lambda`.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the noncentral chisquare distribution.

    .. seealso::
        :meth:`numpy.random.noncentral_chisquare
        <numpy.random.mtrand.RandomState.noncentral_chisquare>`
    """
    rs = _generator.get_random_state()
    return rs.noncentral_chisquare(df, nonc, size=size, dtype=dtype)
コード例 #29
0
ファイル: test_generator.py プロジェクト: zelo2/cupy
 def test_get_random_state_memoized(self):
     _generator._random_states = {self.device_id: 'expected',
                                  self.device_id + 1: 'dummy'}
     rs = _generator.get_random_state()
     self.assertEqual('expected', _generator._random_states[self.device_id])
     self.assertEqual(
         'dummy', _generator._random_states[self.device_id + 1])
     self.assertEqual('expected', rs)
コード例 #30
0
ファイル: _distributions.py プロジェクト: CosmosHua/cupy
def multivariate_normal(mean, cov, size=None, check_valid='ignore',
                        tol=1e-08, method='cholesky', dtype=float):
    """Multivariate normal distribution.

    Returns an array of samples drawn from the multivariate normal
    distribution. Its probability density function is defined as

    .. math::
       f(x) = \\frac{1}{(2\\pi|\\Sigma|)^(n/2)} \
           \\exp\\left(-\\frac{1}{2} \
           (x-\\mu)^{\\top}\\Sigma^{-1}(x-\\mu)\\right).

    Args:
        mean (1-D array_like, of length N): Mean of the multivariate normal
            distribution :math:`\\mu`.
        cov (2-D array_like, of shape (N, N)): Covariance matrix
            :math:`\\Sigma` of the multivariate normal distribution. It must be
            symmetric and positive-semidefinite for proper sampling.
        size (int or tuple of ints): The shape of the array. If ``None``, a
            zero-dimensional array is generated.
        check_valid ('warn', 'raise', 'ignore'): Behavior when the covariance
            matrix is not positive semidefinite.
        tol (float): Tolerance when checking the singular values in
            covariance matrix.
        method : { 'cholesky', 'eigh', 'svd'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'cholesky'
            is the fastest, while 'svd' is the slowest but more robust than
            the fastest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.
        dtype: Data type specifier. Only :class:`numpy.float32` and
            :class:`numpy.float64` types are allowed.

    Returns:
        cupy.ndarray: Samples drawn from the multivariate normal distribution.

    .. note:: Default `method` is set to fastest, 'cholesky', unlike numpy
        which defaults to 'svd'. Cholesky decomposition in CuPy will fail
        silently if the input covariance matrix is not positive definite and
        give invalid results, unlike in numpy, where an invalid covariance
        matrix will raise an exception. Setting `check_valid` to 'raise' will
        replicate numpy behavior by checking the input, but will also force
        device synchronization. If validity of input is unknown, setting
        `method` to 'einh' or 'svd' and `check_valid` to 'warn' will use
        cholesky decomposition for positive definite matrices, and fallback to
        the specified `method` for other matrices (i.e., not positive
        semi-definite), and will warn if decomposition is suspect.

    .. seealso:: :func:`numpy.random.multivariate_normal`

    """
    _util.experimental('cupy.random.multivariate_normal')
    rs = _generator.get_random_state()
    x = rs.multivariate_normal(mean, cov, size, check_valid, tol, method,
                               dtype)
    return x