コード例 #1
0
    def test_cub_max(self, xp, dtype, axis):
        a = testing.shaped_random(self.shape, xp, dtype, order=self.order)

        if xp is numpy:
            return a.max(axis=axis)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        if self.backend == 'device':
            func_name = 'cupy._core._routines_statistics.cub.'
            if len(axis) == len(self.shape):
                func_name += 'device_reduce'
            else:
                func_name += 'device_segmented_reduce'
            with testing.AssertFunctionIsCalled(func_name, return_value=ret):
                a.max(axis=axis)
        elif self.backend == 'block':
            # this is the only function we can mock; the rest is cdef'd
            func_name = 'cupy._core._cub_reduction.'
            func_name += '_SimpleCubReductionKernel_get_cached_function'
            func = _cub_reduction._SimpleCubReductionKernel_get_cached_function
            if len(axis) == len(self.shape):
                times_called = 2  # two passes
            else:
                times_called = 1  # one pass
            if a.size == 0:
                times_called = 0  # _reduction.pyx has an early return path
            with testing.AssertFunctionIsCalled(func_name,
                                                wraps=func,
                                                times_called=times_called):
                a.max(axis=axis)
        elif self.backend == 'fallback':
            pass
        # ...then perform the actual computation
        return a.max(axis=axis)
コード例 #2
0
    def test_cub_argmax(self, xp, dtype):
        _skip_cuda90(dtype)
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order == 'C':
            a = xp.ascontiguousarray(a)
        else:
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.argmax(axis=self.axis)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        if self.backend == 'device':
            func_name = 'cupy._core._routines_statistics.cub.'
            func_name += 'device_reduce'
            with testing.AssertFunctionIsCalled(func_name, return_value=ret):
                a.argmax(axis=self.axis)
        elif self.backend == 'block':
            # this is the only function we can mock; the rest is cdef'd
            func_name = 'cupy._core._cub_reduction.'
            func_name += '_SimpleCubReductionKernel_get_cached_function'
            func = _cub_reduction._SimpleCubReductionKernel_get_cached_function
            if self.axis is not None and len(self.shape) > 1:
                times_called = 1  # one pass
            else:
                times_called = 2  # two passes
            with testing.AssertFunctionIsCalled(func_name,
                                                wraps=func,
                                                times_called=times_called):
                a.argmax(axis=self.axis)
        # ...then perform the actual computation
        return a.argmax(axis=self.axis)
コード例 #3
0
    def test_cub_prod(self, xp, dtype, axis):
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.prod(axis=axis)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        if self.backend == 'device':
            func_name = 'cupy.core._routines_math.cub.'
            if len(axis) == len(self.shape):
                func_name += 'device_reduce'
            else:
                func_name += 'device_segmented_reduce'
            with testing.AssertFunctionIsCalled(func_name, return_value=ret):
                a.prod(axis=axis)
        elif self.backend == 'block':
            # this is the only function we can mock; the rest is cdef'd
            func_name = 'cupy.core._cub_reduction.'
            func_name += '_SimpleCubReductionKernel_get_cached_function'
            func = _cub_reduction._SimpleCubReductionKernel_get_cached_function
            if len(axis) == len(self.shape):
                times_called = 2  # two passes
            else:
                times_called = 1  # one pass
            with testing.AssertFunctionIsCalled(func_name,
                                                wraps=func,
                                                times_called=times_called):
                a.prod(axis=axis)
        # ...then perform the actual computation
        return a.prod(axis=axis)
コード例 #4
0
 def test_spy_ndarray(self):
     orig = cupy.ndarray
     with testing.AssertFunctionIsCalled('cupy.ndarray',
                                         wraps=cupy.ndarray):
         a = cupy.ndarray((2, 3), numpy.float32)
     assert cupy.ndarray is orig
     assert isinstance(a, cupy.ndarray)
コード例 #5
0
 def test_fail_called_twice(self):
     orig = cupy.ndarray
     with pytest.raises(AssertionError):
         with testing.AssertFunctionIsCalled('cupy.ndarray'):
             cupy.ndarray((2, 3), numpy.float32)
             cupy.ndarray((2, 3), numpy.float32)
     assert cupy.ndarray is orig
コード例 #6
0
 def test_inner_error(self):
     orig = cupy.ndarray
     with pytest.raises(numpy.AxisError):
         with testing.AssertFunctionIsCalled('cupy.ndarray'):
             cupy.ndarray((2, 3), numpy.float32)
             raise numpy.AxisError('foo')
     assert cupy.ndarray is orig
コード例 #7
0
    def test_can_use_accelerator_set_unset(self):
        # ensure we use CUB block reduction and not CUB device reduction
        old_routine_accelerators = _accelerator.get_routine_accelerators()
        _accelerator.set_routine_accelerators([])

        a = cupy.random.random((10, 10))
        # this is the only function we can mock; the rest is cdef'd
        func = ''.join(('cupy.core._cub_reduction.',
                        '_SimpleCubReductionKernel_get_cached_function'))
        with testing.AssertFunctionIsCalled(func):
            a.sum()
        with testing.AssertFunctionIsCalled(func):
            a.sum(axis=1)
        with testing.AssertFunctionIsCalled(func, times_called=0):
            a.sum(axis=0)

        _accelerator.set_routine_accelerators(old_routine_accelerators)
コード例 #8
0
ファイル: test_histogram.py プロジェクト: anaruse/cupy
    def test_histogram(self, xp, dtype):
        x = testing.shaped_arange((10, ), xp, dtype)

        if xp is numpy:
            return xp.histogram(x)

        # xp is cupy, first ensure we really use CUB
        cub_func = 'cupy._statistics.histogram.cub.device_histogram'
        with testing.AssertFunctionIsCalled(cub_func):
            xp.histogram(x)
        # ...then perform the actual computation
        return xp.histogram(x)
コード例 #9
0
ファイル: test_optimize.py プロジェクト: zhaohb/cupy
    def test_optimize2(self):
        # Ensure the CUB optimizer is not run when the CUB kernel is not used.
        func = 'cupy.core._cub_reduction._get_cub_optimized_params'
        times_called = 2 if ('cub' in self.backend) else 0

        # Setting "wraps" is necessary to avoid errors being silently ignored.
        with testing.AssertFunctionIsCalled(
                func,
                times_called=times_called,
                wraps=cupy.core._cub_reduction._get_cub_optimized_params):
            with cupyx.optimizing.optimize():
                self.x.sum()
            with cupyx.optimizing.optimize():
                self.x.sum(axis=1)
            with cupyx.optimizing.optimize():
                self.x.sum(axis=0)  # CUB optimizer not used
コード例 #10
0
ファイル: test_optimize.py プロジェクト: zhaohb/cupy
    def test_optimize1(self):
        # Ensure the optimizer is run 3 times for all backends.
        func = 'cupyx.optimizing._optimize._optimize'
        times_called = 3

        # Setting "wraps" is necessary to avoid compilation errors.
        with testing.AssertFunctionIsCalled(
                func,
                times_called=times_called,
                wraps=cupyx.optimizing._optimize._optimize):
            with cupyx.optimizing.optimize():
                self.x.sum()
            with cupyx.optimizing.optimize():
                self.x.sum(axis=1)
            with cupyx.optimizing.optimize():
                self.x.sum(axis=0)  # CUB falls back to the simple reduction
コード例 #11
0
ファイル: test_ndarray_reduction.py プロジェクト: mrkwjc/cupy
    def test_cub_max(self, xp, dtype, axis):
        a = testing.shaped_random(self.shape, xp, dtype, order=self.order)

        if xp is numpy:
            return a.max(axis=axis)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        if len(axis) == len(self.shape):
            func = 'cupy.core._routines_statistics.cub.device_reduce'
        else:
            func = 'cupy.core._routines_statistics.cub.device_segmented_reduce'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.max(axis=axis)
        # ...then perform the actual computation
        return a.max(axis=axis)
コード例 #12
0
ファイル: test_search.py プロジェクト: zelo2/cupy
    def test_cub_argmax(self, xp, dtype):
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order == 'C':
            a = xp.ascontiguousarray(a)
        else:
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.argmax()

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        func = 'cupy.core._routines_statistics.cub.device_reduce'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.argmax()
        # ...then perform the actual computation
        return a.argmax()
コード例 #13
0
    def test_cutensor_sum(self, xp, dtype, axis):
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.sum(axis=axis)

        # xp is cupy, first ensure we really use cuTENSOR
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        func = 'cupy.cutensor._try_reduction_routine'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.sum(axis=axis)
        # ...then perform the actual computation
        return a.sum(axis=axis)
コード例 #14
0
ファイル: test_sumprod.py プロジェクト: zelo2/cupy
    def test_cub_cumsum(self, xp, dtype):
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.cumsum()

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        func = 'cupy.core._routines_math.cub.device_scan'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.cumsum()
        # ...then perform the actual computation
        return a.cumsum()
コード例 #15
0
    def test_cub_prod(self, xp, dtype, axis):
        assert cupy.cuda.cub_enabled
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.prod(axis=axis)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        if len(axis) == len(self.shape):
            func = 'cupy.core._routines_math.cub.device_reduce'
        else:
            func = 'cupy.core._routines_math.cub.device_segmented_reduce'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.prod(axis=axis)
        # ...then perform the actual computation
        return a.prod(axis=axis)
コード例 #16
0
    def test_cub_cumprod(self, xp, dtype):
        if self.backend == 'block':
            raise unittest.SkipTest('does not support')

        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            result = a.cumprod()
            return self._mitigate_cumprod(xp, dtype, result)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        func = 'cupy.core._routines_math.cub.device_scan'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.cumprod()
        # ...then perform the actual computation
        result = a.cumprod()
        return self._mitigate_cumprod(xp, dtype, result)
コード例 #17
0
 def test_fail_not_called(self):
     orig = cupy.ndarray
     with pytest.raises(AssertionError):
         with testing.AssertFunctionIsCalled('cupy.ndarray'):
             pass
     assert cupy.ndarray is orig
コード例 #18
0
 def test_times_called(self):
     orig = cupy.ndarray
     with testing.AssertFunctionIsCalled('cupy.ndarray', times_called=2):
         cupy.ndarray((2, 3), numpy.float32)
         cupy.ndarray((2, 3), numpy.float32)
     assert cupy.ndarray is orig