コード例 #1
0
ファイル: utils.py プロジェクト: czammar/MNO_finalproject
def compute_error(x_obj, x_approx):
    '''
    Error absoluto o relativo entre x_obj y x_approx.
    '''
    if cp.linalg.norm(x_obj) > cp.nextafter(0, 1):
        Err = cp.linalg.norm(x_obj - x_approx) / cp.linalg.norm(x_obj)
    else:
        Err = cp.linalg.norm(x_obj - x_approx)
    return Err
コード例 #2
0
ファイル: histogram.py プロジェクト: zhaohb/cupy
def histogram(x, bins=10, range=None, weights=None, density=False):
    """Computes the histogram of a set of data.

    Args:
        x (cupy.ndarray): Input array.
        bins (int or cupy.ndarray): If ``bins`` is an int, it represents the
            number of bins. If ``bins`` is an :class:`~cupy.ndarray`, it
            represents a bin edges.
        range (2-tuple of float, optional): The lower and upper range of the
            bins.  If not provided, range is simply ``(x.min(), x.max())``.
            Values outside the range are ignored. The first element of the
            range must be less than or equal to the second. `range` affects the
            automatic bin computation as well. While bin width is computed to
            be optimal based on the actual data within `range`, the bin count
            will fill the entire range including portions containing no data.
        density (bool, optional): If False, the default, returns the number of
            samples in each bin. If True, returns the probability *density*
            function at the bin, ``bin_count / sample_count / bin_volume``.
        weights (cupy.ndarray, optional): An array of weights, of the same
            shape as `x`.  Each value in `x` only contributes its associated
            weight towards the bin count (instead of 1).
    Returns:
        tuple: ``(hist, bin_edges)`` where ``hist`` is a :class:`cupy.ndarray`
        storing the values of the histogram, and ``bin_edges`` is a
        :class:`cupy.ndarray` storing the bin edges.

    .. warning::

        This function may synchronize the device.

    .. seealso:: :func:`numpy.histogram`
    """

    if x.dtype.kind == 'c':
        # TODO(unno): comparison between complex numbers is not implemented
        raise NotImplementedError('complex number is not supported')

    if not isinstance(x, cupy.ndarray):
        raise ValueError('x must be a cupy.ndarray')

    x, weights = _ravel_and_check_weights(x, weights)
    bin_edges = _get_bin_edges(x, bins, range)

    if weights is None:
        y = cupy.zeros(bin_edges.size - 1, dtype='l')
        for accelerator in _accelerator.get_routine_accelerators():
            # CUB uses int for bin counts
            # TODO(leofang): support >= 2^31 elements in x?
            if (accelerator == _accelerator.ACCELERATOR_CUB
                    and x.size <= 0x7fffffff and bin_edges.size <= 0x7fffffff):
                # Need to ensure the dtype of bin_edges as it's needed for both
                # the CUB call and the correction later
                assert isinstance(bin_edges, cupy.ndarray)
                if numpy.issubdtype(x.dtype, numpy.integer):
                    bin_type = numpy.float
                else:
                    bin_type = numpy.result_type(bin_edges.dtype, x.dtype)
                    if (bin_type == numpy.float16
                            and not common._is_fp16_supported()):
                        bin_type = numpy.float32
                    x = x.astype(bin_type, copy=False)
                acc_bin_edge = bin_edges.astype(bin_type, copy=True)
                # CUB's upper bin boundary is exclusive for all bins, including
                # the last bin, so we must shift it to comply with NumPy
                if x.dtype.kind in 'ui':
                    acc_bin_edge[-1] += 1
                elif x.dtype.kind == 'f':
                    last = acc_bin_edge[-1]
                    acc_bin_edge[-1] = cupy.nextafter(last, last + 1)
                if runtime.is_hip:
                    y = y.astype(cupy.uint64, copy=False)
                y = cub.device_histogram(x, acc_bin_edge, y)
                if runtime.is_hip:
                    y = y.astype(cupy.int64, copy=False)
                break
        else:
            _histogram_kernel(x, bin_edges, bin_edges.size, y)
    else:
        simple_weights = (cupy.can_cast(weights.dtype, cupy.float64)
                          or cupy.can_cast(weights.dtype, cupy.complex128))
        if not simple_weights:
            # object dtype such as Decimal are supported in NumPy, but not here
            raise NotImplementedError(
                'only weights with dtype that can be cast to float or complex '
                'are supported')
        if weights.dtype.kind == 'c':
            y = cupy.zeros(bin_edges.size - 1, dtype=cupy.complex128)
            _weighted_histogram_kernel(x, bin_edges, bin_edges.size,
                                       weights.real, y.real)
            _weighted_histogram_kernel(x, bin_edges, bin_edges.size,
                                       weights.imag, y.imag)
        else:
            if weights.dtype.kind in 'bui':
                y = cupy.zeros(bin_edges.size - 1, dtype=int)
            else:
                y = cupy.zeros(bin_edges.size - 1, dtype=cupy.float64)
            _weighted_histogram_kernel(x, bin_edges, bin_edges.size, weights,
                                       y)

    if density:
        db = cupy.array(cupy.diff(bin_edges), cupy.float64)
        return y / db / y.sum(), bin_edges
    return y, bin_edges