コード例 #1
0
def binary_erosion(image, selem=None, out=None):
    """Return fast binary morphological erosion of an image.

    This function returns the same result as greyscale erosion but performs
    faster for binary images.

    Morphological erosion sets a pixel at ``(i,j)`` to the minimum over all
    pixels in the neighborhood centered at ``(i,j)``. Erosion shrinks bright
    regions and enlarges dark regions.

    Parameters
    ----------
    image : ndarray
        Binary input image.
    selem : ndarray, optional
        The neighborhood expressed as a 2-D array of 1's and 0's.
        If None, use a cross-shaped structuring element (connectivity=1).
    out : ndarray of bool, optional
        The array to store the result of the morphology. If None is
        passed, a new array will be allocated.

    Returns
    -------
    eroded : ndarray of bool or uint
        The result of the morphological erosion taking values in
        ``[False, True]``.

    """
    if out is None:
        out = cp.empty(image.shape, dtype=cp.bool_)
    ndi.binary_erosion(image, structure=selem, output=out, border_value=True)
    return out
コード例 #2
0
ファイル: test_canny.py プロジェクト: mritools/cupyimg
 def test_01_01_circle(self):
     """Test that the Canny filter finds the outlines of a circle"""
     i, j = cp.mgrid[-200:200, -200:200].astype(float) / 200
     c = cp.abs(cp.sqrt(i * i + j * j) - 0.5) < 0.02
     result = feature.canny(c.astype(float), 4, 0, 0,
                            cp.ones(c.shape, bool))
     #
     # erode and dilate the circle to get rings that should contain the
     # outlines
     #
     # TODO: grlee77: only implemented brute_force=True, so added that to
     #                these tests
     cd = binary_dilation(c, iterations=3, brute_force=True)
     ce = binary_erosion(c, iterations=3, brute_force=True)
     cde = cp.logical_and(cd, cp.logical_not(ce))
     self.assertTrue(cp.all(cde[result]))
     #
     # The circle has a radius of 100. There are two rings here, one
     # for the inside edge and one for the outside. So that's
     # 100 * 2 * 2 * 3 for those places where pi is still 3.
     # The edge contains both pixels if there's a tie, so we
     # bump the count a little.
     point_count = cp.sum(result)
     self.assertTrue(point_count > 1200)
     self.assertTrue(point_count < 1600)
コード例 #3
0
ファイル: edges.py プロジェクト: MannyKayy/cupyimg
def _mask_filter_result(result, mask):
    """Return result after masking.

    Input masks are eroded so that mask areas in the original image don't
    affect values in the result.
    """
    if mask is not None:
        erosion_selem = ndi.generate_binary_structure(mask.ndim, mask.ndim)
        mask = ndi.binary_erosion(mask, erosion_selem, border_value=0)
        result *= mask
    return result
コード例 #4
0
ファイル: morphsnakes.py プロジェクト: mritools/cupyimg
def sup_inf(u):
    """SI operator."""

    if cnp.ndim(u) == 2:
        P = _P2
    elif cnp.ndim(u) == 3:
        P = _P3
    else:
        raise ValueError("u has an invalid number of dimensions "
                         "(should be 2 or 3)")

    erosions = []
    for P_i in P:
        e = ndi.binary_erosion(u, cp.asarray(P_i)).astype(np.int8, copy=False)
        erosions.append(e)

    return cp.stack(erosions, axis=0).max(0)
コード例 #5
0
ファイル: test_canny.py プロジェクト: MannyKayy/cupyimg
 def test_01_02_circle_with_noise(self):
     """Test that the Canny filter finds the circle outlines
      in a noisy image"""
     cp.random.seed(0)
     i, j = cp.mgrid[-200:200, -200:200].astype(float) / 200
     c = cp.abs(cp.sqrt(i * i + j * j) - 0.5) < 0.02
     cf = c.astype(float) * 0.5 + cp.random.uniform(size=c.shape) * 0.5
     result = F.canny(cf, 4, 0.1, 0.2, cp.ones(c.shape, bool))
     #
     # erode and dilate the circle to get rings that should contain the
     # outlines
     #
     cd = binary_dilation(c, iterations=4, brute_force=True)
     ce = binary_erosion(c, iterations=4, brute_force=True)
     cde = cp.logical_and(cd, cp.logical_not(ce))
     self.assertTrue(cp.all(cde[result]))
     point_count = cp.sum(result)
     self.assertTrue(point_count > 1200)
     self.assertTrue(point_count < 1600)
コード例 #6
0
def perimeter(image, neighbourhood=4):
    """Calculate total perimeter of all objects in binary image.

    Parameters
    ----------
    image : (N, M) ndarray
        2D binary image.
    neighbourhood : 4 or 8, optional
        Neighborhood connectivity for border pixel determination. It is used to
        compute the contour. A higher neighbourhood widens the border on which
        the perimeter is computed.

    Returns
    -------
    perimeter : float
        Total perimeter of all objects in binary image.

    References
    ----------
    .. [1] K. Benkrid, D. Crookes. Design and FPGA Implementation of
           a Perimeter Estimator. The Queen's University of Belfast.
           http://www.cs.qub.ac.uk/~d.crookes/webpubs/papers/perimeter.doc

    Examples
    --------
    >>> from skimage import data, util
    >>> from skimage.measure import label
    >>> # coins image (binary)
    >>> img_coins = data.coins() > 110
    >>> # total perimeter of all objects in the image
    >>> perimeter(img_coins, neighbourhood=4)  # doctest: +ELLIPSIS
    7796.867...
    >>> perimeter(img_coins, neighbourhood=8)  # doctest: +ELLIPSIS
    8806.268...

    """
    if image.ndim != 2:
        raise NotImplementedError("`perimeter` supports 2D images only")

    if neighbourhood == 4:
        strel = STREL_4
    else:
        strel = STREL_8
    strel = cp.asarray(strel)
    image = image.astype(cp.uint8)
    eroded_image = ndi.binary_erosion(image, strel, border_value=0)
    border_image = image - eroded_image

    perimeter_weights = cp.zeros(50, dtype=cp.double)
    perimeter_weights[[5, 7, 15, 17, 25, 27]] = 1
    perimeter_weights[[21, 33]] = sqrt(2)
    perimeter_weights[[13, 23]] = (1 + sqrt(2)) / 2

    perimeter_image = ndi.convolve(
        border_image,
        cp.asarray([[10, 2, 10], [2, 1, 2], [10, 2, 10]]),
        mode="constant",
        cval=0,
    )

    # You can also write
    # return perimeter_weights[perimeter_image].sum()
    # but that was measured as taking much longer than bincount + cp.dot (5x
    # as much time)
    perimeter_histogram = cp.bincount(perimeter_image.ravel(), minlength=50)
    total_perimeter = perimeter_histogram @ perimeter_weights
    return total_perimeter
コード例 #7
0
ファイル: morphsnakes.py プロジェクト: mritools/cupyimg
def morphological_geodesic_active_contour(
    gimage,
    iterations,
    init_level_set="circle",
    smoothing=1,
    threshold="auto",
    balloon=0,
    iter_callback=lambda x: None,
):
    """Morphological Geodesic Active Contours (MorphGAC).

    Geodesic active contours implemented with morphological operators. It can
    be used to segment objects with visible but noisy, cluttered, broken
    borders.

    Parameters
    ----------
    gimage : (M, N) or (L, M, N) array
        Preprocessed image or volume to be segmented. This is very rarely the
        original image. Instead, this is usually a preprocessed version of the
        original image that enhances and highlights the borders (or other
        structures) of the object to segment.
        `morphological_geodesic_active_contour` will try to stop the contour
        evolution in areas where `gimage` is small. See
        `morphsnakes.inverse_gaussian_gradient` as an example function to
        perform this preprocessing. Note that the quality of
        `morphological_geodesic_active_contour` might greatly depend on this
        preprocessing.
    iterations : uint
        Number of iterations to run.
    init_level_set : str, (M, N) array, or (L, M, N) array
        Initial level set. If an array is given, it will be binarized and used
        as the initial level set. If a string is given, it defines the method
        to generate a reasonable initial level set with the shape of the
        `image`. Accepted values are 'checkerboard' and 'circle'. See the
        documentation of `checkerboard_level_set` and `circle_level_set`
        respectively for details about how these level sets are created.
    smoothing : uint, optional
        Number of times the smoothing operator is applied per iteration.
        Reasonable values are around 1-4. Larger values lead to smoother
        segmentations.
    threshold : float, optional
        Areas of the image with a value smaller than this threshold will be
        considered borders. The evolution of the contour will stop in this
        areas.
    balloon : float, optional
        Balloon force to guide the contour in non-informative areas of the
        image, i.e., areas where the gradient of the image is too small to push
        the contour towards a border. A negative value will shrink the contour,
        while a positive value will expand the contour in these areas. Setting
        this to zero will disable the balloon force.
    iter_callback : function, optional
        If given, this function is called once per iteration with the current
        level set as the only argument. This is useful for debugging or for
        plotting intermediate results during the evolution.

    Returns
    -------
    out : (M, N) or (L, M, N) array
        Final segmentation (i.e., the final level set)

    See Also
    --------
    inverse_gaussian_gradient, circle_level_set, checkerboard_level_set

    Notes
    -----

    This is a version of the Geodesic Active Contours (GAC) algorithm that uses
    morphological operators instead of solving partial differential equations
    (PDEs) for the evolution of the contour. The set of morphological operators
    used in this algorithm are proved to be infinitesimally equivalent to the
    GAC PDEs (see [1]_). However, morphological operators are do not suffer
    from the numerical stability issues typically found in PDEs (e.g., it is
    not necessary to find the right time step for the evolution), and are
    computationally faster.

    The algorithm and its theoretical derivation are described in [1]_.

    References
    ----------
    .. [1] A Morphological Approach to Curvature-based Evolution of Curves and
           Surfaces, Pablo Márquez-Neila, Luis Baumela, Luis Álvarez. In IEEE
           Transactions on Pattern Analysis and Machine Intelligence (PAMI),
           2014, :DOI:`10.1109/TPAMI.2013.106`
    """

    image = gimage
    init_level_set = _init_level_set(init_level_set, image.shape)

    _check_input(image, init_level_set)

    if threshold == "auto":
        threshold = cp.percentile(image, 40)

    structure = cp.ones((3, ) * len(image.shape), dtype=cp.int8)
    dimage = cnp.gradient(image)
    # threshold_mask = image > threshold
    if balloon != 0:
        threshold_mask_balloon = image > threshold / cp.abs(balloon)

    u = (init_level_set > 0).astype(cp.int8)

    iter_callback(u)

    for _ in range(iterations):

        # Balloon
        if balloon > 0:
            aux = ndi.binary_dilation(u, structure)
        elif balloon < 0:
            aux = ndi.binary_erosion(u, structure)
        if balloon != 0:
            u[threshold_mask_balloon] = aux[threshold_mask_balloon]

        # Image attachment
        aux = cp.zeros_like(image)
        du = cnp.gradient(u)
        for el1, el2 in zip(dimage, du):
            aux += el1 * el2
        u[aux > 0] = 1
        u[aux < 0] = 0

        # Smoothing
        for _ in range(smoothing):
            u = _curvop(u)

        iter_callback(u)

    return u
コード例 #8
0
def canny(
    image,
    sigma=1.0,
    low_threshold=None,
    high_threshold=None,
    mask=None,
    use_quantiles=False,
):
    """Edge filter an image using the Canny algorithm.

    Parameters
    -----------
    image : 2D array
        Grayscale input image to detect edges on; can be of any dtype.
    sigma : float, optional
        Standard deviation of the Gaussian filter.
    low_threshold : float, optional
        Lower bound for hysteresis thresholding (linking edges).
        If None, low_threshold is set to 10% of dtype's max.
    high_threshold : float, optional
        Upper bound for hysteresis thresholding (linking edges).
        If None, high_threshold is set to 20% of dtype's max.
    mask : array, dtype=bool, optional
        Mask to limit the application of Canny to a certain area.
    use_quantiles : bool, optional
        If True then treat low_threshold and high_threshold as quantiles of the
        edge magnitude image, rather than absolute edge magnitude values. If True
        then the thresholds must be in the range [0, 1].

    Returns
    -------
    output : 2D array (image)
        The binary edge map.

    See also
    --------
    skimage.sobel

    Notes
    -----
    The steps of the algorithm are as follows:

    * Smooth the image using a Gaussian with ``sigma`` width.

    * Apply the horizontal and vertical Sobel operators to get the gradients
      within the image. The edge strength is the norm of the gradient.

    * Thin potential edges to 1-pixel wide curves. First, find the normal
      to the edge at each point. This is done by looking at the
      signs and the relative magnitude of the X-Sobel and Y-Sobel
      to sort the points into 4 categories: horizontal, vertical,
      diagonal and antidiagonal. Then look in the normal and reverse
      directions to see if the values in either of those directions are
      greater than the point in question. Use interpolation to get a mix of
      points instead of picking the one that's the closest to the normal.

    * Perform a hysteresis thresholding: first label all points above the
      high threshold as edges. Then recursively label any point above the
      low threshold that is 8-connected to a labeled point as an edge.

    References
    -----------
    .. [1] Canny, J., A Computational Approach To Edge Detection, IEEE Trans.
           Pattern Analysis and Machine Intelligence, 8:679-714, 1986
           :DOI:`10.1109/TPAMI.1986.4767851`
    .. [2] William Green's Canny tutorial
           https://en.wikipedia.org/wiki/Canny_edge_detector

    Examples
    --------
    >>> import cupy as cp
    >>> from cupyimg.skimage import feature
    >>> # Generate noisy image of a square
    >>> im = cp.zeros((256, 256))
    >>> im[64:-64, 64:-64] = 1
    >>> im += 0.2 * cp.random.rand(*im.shape)
    >>> # First trial with the Canny filter, with the default smoothing
    >>> edges1 = feature.canny(im)
    >>> # Increase the smoothing for better results
    >>> edges2 = feature.canny(im, sigma=3)
    """

    #
    # The steps involved:
    #
    # * Smooth using the Gaussian with sigma above.
    #
    # * Apply the horizontal and vertical Sobel operators to get the gradients
    #   within the image. The edge strength is the sum of the magnitudes
    #   of the gradients in each direction.
    #
    # * Find the normal to the edge at each point using the arctangent of the
    #   ratio of the Y sobel over the X sobel - pragmatically, we can
    #   look at the signs of X and Y and the relative magnitude of X vs Y
    #   to sort the points into 4 categories: horizontal, vertical,
    #   diagonal and antidiagonal.
    #
    # * Look in the normal and reverse directions to see if the values
    #   in either of those directions are greater than the point in question.
    #   Use interpolation to get a mix of points instead of picking the one
    #   that's the closest to the normal.
    #
    # * Label all points above the high threshold as edges.
    # * Recursively label any point above the low threshold that is 8-connected
    #   to a labeled point as an edge.
    #
    # Regarding masks, any point touching a masked point will have a gradient
    # that is "infected" by the masked point, so it's enough to erode the
    # mask by one and then mask the output. We also mask out the border points
    # because who knows what lies beyond the edge of the image?
    #
    check_nD(image, 2)
    dtype_max = dtype_limits(image, clip_negative=False)[1]

    if low_threshold is None:
        low_threshold = 0.1
    elif use_quantiles:
        if not (0.0 <= low_threshold <= 1.0):
            raise ValueError("Quantile thresholds must be between 0 and 1.")
    else:
        low_threshold = low_threshold / dtype_max

    if high_threshold is None:
        high_threshold = 0.2
    elif use_quantiles:
        if not (0.0 <= high_threshold <= 1.0):
            raise ValueError("Quantile thresholds must be between 0 and 1.")
    else:
        high_threshold = high_threshold / dtype_max

    if mask is None:
        mask = cp.ones(image.shape, dtype=bool)

    def fsmooth(x):
        return img_as_float(gaussian(x, sigma, mode="constant"))

    smoothed = smooth_with_function_and_mask(image, fsmooth, mask)
    jsobel = ndi.sobel(smoothed, axis=1)
    isobel = ndi.sobel(smoothed, axis=0)
    abs_isobel = cp.abs(isobel)
    abs_jsobel = cp.abs(jsobel)
    magnitude = cp.hypot(isobel, jsobel)

    #
    # Make the eroded mask. Setting the border value to zero will wipe
    # out the image edges for us.
    #
    s = generate_binary_structure(2, 2)
    eroded_mask = binary_erosion(mask, s, border_value=0)
    eroded_mask = eroded_mask & (magnitude > 0)
    #
    # --------- Find local maxima --------------
    #
    # Assign each point to have a normal of 0-45 degrees, 45-90 degrees,
    # 90-135 degrees and 135-180 degrees.
    #
    local_maxima = cp.zeros(image.shape, bool)
    # ----- 0 to 45 degrees ------
    pts_plus = (isobel >= 0) & (jsobel >= 0) & (abs_isobel >= abs_jsobel)
    pts_minus = (isobel <= 0) & (jsobel <= 0) & (abs_isobel >= abs_jsobel)
    pts = pts_plus | pts_minus
    pts = eroded_mask & pts
    # Get the magnitudes shifted left to make a matrix of the points to the
    # right of pts. Similarly, shift left and down to get the points to the
    # top right of pts.
    c1 = magnitude[1:, :][pts[:-1, :]]
    c2 = magnitude[1:, 1:][pts[:-1, :-1]]
    m = magnitude[pts]
    w = abs_jsobel[pts] / abs_isobel[pts]
    c_plus = c2 * w + c1 * (1 - w) <= m
    c1 = magnitude[:-1, :][pts[1:, :]]
    c2 = magnitude[:-1, :-1][pts[1:, 1:]]
    c_minus = c2 * w + c1 * (1 - w) <= m
    local_maxima[pts] = c_plus & c_minus
    # ----- 45 to 90 degrees ------
    # Mix diagonal and vertical
    #
    pts_plus = (isobel >= 0) & (jsobel >= 0) & (abs_isobel <= abs_jsobel)
    pts_minus = (isobel <= 0) & (jsobel <= 0) & (abs_isobel <= abs_jsobel)
    pts = pts_plus | pts_minus
    pts = eroded_mask & pts
    c1 = magnitude[:, 1:][pts[:, :-1]]
    c2 = magnitude[1:, 1:][pts[:-1, :-1]]
    m = magnitude[pts]
    w = abs_isobel[pts] / abs_jsobel[pts]
    c_plus = c2 * w + c1 * (1 - w) <= m
    c1 = magnitude[:, :-1][pts[:, 1:]]
    c2 = magnitude[:-1, :-1][pts[1:, 1:]]
    c_minus = c2 * w + c1 * (1 - w) <= m
    local_maxima[pts] = c_plus & c_minus
    # ----- 90 to 135 degrees ------
    # Mix anti-diagonal and vertical
    #
    pts_plus = (isobel <= 0) & (jsobel >= 0) & (abs_isobel <= abs_jsobel)
    pts_minus = (isobel >= 0) & (jsobel <= 0) & (abs_isobel <= abs_jsobel)
    pts = pts_plus | pts_minus
    pts = eroded_mask & pts
    c1a = magnitude[:, 1:][pts[:, :-1]]
    c2a = magnitude[:-1, 1:][pts[1:, :-1]]
    m = magnitude[pts]
    w = abs_isobel[pts] / abs_jsobel[pts]
    c_plus = c2a * w + c1a * (1.0 - w) <= m
    c1 = magnitude[:, :-1][pts[:, 1:]]
    c2 = magnitude[1:, :-1][pts[:-1, 1:]]
    c_minus = c2 * w + c1 * (1.0 - w) <= m
    local_maxima[pts] = c_plus & c_minus
    # ----- 135 to 180 degrees ------
    # Mix anti-diagonal and anti-horizontal
    #
    pts_plus = (isobel <= 0) & (jsobel >= 0) & (abs_isobel >= abs_jsobel)
    pts_minus = (isobel >= 0) & (jsobel <= 0) & (abs_isobel >= abs_jsobel)
    pts = pts_plus | pts_minus
    pts = eroded_mask & pts
    c1 = magnitude[:-1, :][pts[1:, :]]
    c2 = magnitude[:-1, 1:][pts[1:, :-1]]
    m = magnitude[pts]
    w = abs_jsobel[pts] / abs_isobel[pts]
    c_plus = c2 * w + c1 * (1 - w) <= m
    c1 = magnitude[1:, :][pts[:-1, :]]
    c2 = magnitude[1:, :-1][pts[:-1, 1:]]
    c_minus = c2 * w + c1 * (1 - w) <= m
    local_maxima[pts] = c_plus & c_minus

    #
    # ---- If use_quantiles is set then calculate the thresholds to use
    #
    if use_quantiles:
        high_threshold = cp.percentile(magnitude, 100.0 * high_threshold)
        low_threshold = cp.percentile(magnitude, 100.0 * low_threshold)

    #
    # ---- Create two masks at the two thresholds.
    #
    high_mask = local_maxima & (magnitude >= high_threshold)
    low_mask = local_maxima & (magnitude >= low_threshold)

    #
    # Segment the low-mask, then only keep low-segments that have
    # some high_mask component in them
    #
    labels, count = ndi.label(low_mask, structure=cp.ones((3, 3), bool))
    if count == 0:
        return low_mask

    sums = cp.asarray(
        ndi.sum(high_mask, labels, cp.arange(count, dtype=cp.int32) + 1),
    )
    sums = cp.atleast_1d(sums)
    good_label = cp.zeros((count + 1,), bool)
    good_label[1:] = sums > 0
    output_mask = good_label[labels]
    return output_mask