def call(self, env, *args, unroll=None): if len(args) == 0: raise TypeError('range expected at least 1 argument, got 0') elif len(args) == 1: start, stop, step = Constant(0), args[0], Constant(1) elif len(args) == 2: start, stop, step = args[0], args[1], Constant(1) elif len(args) == 3: start, stop, step = args else: raise TypeError( f'range expected at most 3 argument, got {len(args)}') if unroll is not None: if not all(isinstance(x, Constant) for x in (start, stop, step, unroll)): raise TypeError( 'loop unrolling requires constant start, stop, step and ' 'unroll value') unroll = unroll.obj if not (isinstance(unroll, int) or isinstance(unroll, bool)): raise TypeError( 'unroll value expected to be of type int, ' f'got {type(unroll).__name__}') if unroll is False: unroll = 1 if not (unroll is True or 0 < unroll < 1 << 31): warnings.warn( 'loop unrolling is ignored as the unroll value is ' 'non-positive or greater than INT_MAX') if isinstance(step, Constant): step_is_positive = step.obj >= 0 elif step.ctype.dtype.kind == 'u': step_is_positive = True else: step_is_positive = None stop = Data.init(stop, env) start = Data.init(start, env) step = Data.init(step, env) if start.ctype.dtype.kind not in 'iu': raise TypeError('range supports only for integer type.') if stop.ctype.dtype.kind not in 'iu': raise TypeError('range supports only for integer type.') if step.ctype.dtype.kind not in 'iu': raise TypeError('range supports only for integer type.') if env.mode == 'numpy': ctype = _cuda_types.Scalar(int) elif env.mode == 'cuda': ctype = stop.ctype else: assert False return Range(start, stop, step, ctype, step_is_positive, unroll=unroll)
def _eval_operand(op, args, env): if is_constants(*args): pyfunc = _cuda_typerules.get_pyfunc(type(op)) return Constant(pyfunc(*[x.obj for x in args])) ufunc = _cuda_typerules.get_ufunc(env.mode, type(op)) return _call_ufunc(ufunc, args, None, env)
def _astype_scalar( x: _T, ctype: _cuda_types.Scalar, casting: _CastingType, env: Environment, ) -> _T: if isinstance(x, Constant): assert not isinstance(x, Data) return Constant(ctype.dtype.type(x.obj)) # # TODO # if not isinstance(x, Data): # raise TypeError(f'{x} is not scalar type.') if not isinstance(x.ctype, _cuda_types.Scalar): raise TypeError(f'{x.code} is not scalar type.') from_t = x.ctype.dtype to_t = ctype.dtype if from_t == to_t: return x # Uses casting rules for scalar values. if not numpy.can_cast(from_t.type(0), to_t.type(0), casting): raise TypeError(f"Cannot cast from '{from_t}' to {to_t} " f"with casting rule {casting}.") if from_t.kind == 'c' and to_t.kind != 'c': if to_t.kind != 'b': warnings.warn( 'Casting complex values to real discards the imaginary part', numpy.ComplexWarning) return Data(f'({ctype})({x.code}.real())', ctype) return Data(f'({ctype})({x.code})', ctype)
def _eval_operand( op: ast.AST, args: Sequence[Union[Constant, Data]], env: Environment, ) -> Union[Constant, Data]: if is_constants(*args): pyfunc = _cuda_typerules.get_pyfunc(type(op)) return Constant(pyfunc(*[x.obj for x in args])) ufunc = _cuda_typerules.get_ufunc(env.mode, type(op)) return _call_ufunc(ufunc, args, None, env)
def call(self, env, mask, var, val_id, *, width=None): name = self._name var = Data.init(var, env) ctype = var.ctype if ctype.dtype.name not in self._dtypes: raise TypeError(f'`{name}` does not support {ctype.dtype} input.') try: mask = mask.obj except Exception: raise TypeError('mask must be an integer') if runtime.is_hip: warnings.warn(f'mask {mask} is ignored on HIP', RuntimeWarning) elif not (0x0 <= mask <= 0xffffffff): raise ValueError('mask is out of range') # val_id refers to "delta" for shfl_{up, down}, "srcLane" for shfl, and # "laneMask" for shfl_xor if self._op in ('up', 'down'): val_id_t = _cuda_types.uint32 else: val_id_t = _cuda_types.int32 val_id = _compile._astype_scalar(val_id, val_id_t, 'same_kind', env) val_id = Data.init(val_id, env) if width: if isinstance(width, Constant): if width.obj not in (2, 4, 8, 16, 32): raise ValueError('width needs to be power of 2') else: width = Constant(64) if runtime.is_hip else Constant(32) width = _compile._astype_scalar(width, _cuda_types.int32, 'same_kind', env) width = Data.init(width, env) code = f'{name}({hex(mask)}, {var.code}, {val_id.code}' code += f', {width.code})' return Data(code, ctype)
def call(self, env, *args, **kwargs): if len(args) == 0: raise TypeError('range expected at least 1 argument, got 0') elif len(args) == 1: start, stop, step = Constant(0), args[0], Constant(1) elif len(args) == 2: start, stop, step = args[0], args[1], Constant(1) elif len(args) == 3: start, stop, step = args else: raise TypeError( f'range expected at most 3 argument, got {len(args)}') if isinstance(step, Constant): step_is_positive = step.obj >= 0 elif step.ctype.dtype.kind == 'u': step_is_positive = True else: step_is_positive = None stop = Data.init(stop, env) start = Data.init(start, env) step = Data.init(step, env) if start.ctype.dtype.kind not in 'iu': raise TypeError('range supports only for integer type.') if stop.ctype.dtype.kind not in 'iu': raise TypeError('range supports only for integer type.') if step.ctype.dtype.kind not in 'iu': raise TypeError('range supports only for integer type.') if env.mode == 'numpy': ctype = _cuda_types.Scalar(int) elif env.mode == 'cuda': ctype = stop.ctype else: assert False return Range(start, stop, step, ctype, step_is_positive)
def _indexing( array: _internal_types.Expr, index: _internal_types.Expr, env: Environment, ) -> Union[Data, Constant]: if isinstance(array, Constant): if isinstance(index, Constant): return Constant(array.obj[index.obj]) raise TypeError( f'{type(array.obj)} is not subscriptable with non-constants.') array = Data.init(array, env) if isinstance(array.ctype, _cuda_types.Tuple): if isinstance(index, Constant): i = index.obj t = array.ctype.types[i] return Data(f'thrust::get<{i}>({array.code})', t) raise TypeError('Tuple is not subscriptable with non-constants.') if isinstance(array.ctype, _cuda_types.ArrayBase): index = Data.init(index, env) ndim = array.ctype.ndim if isinstance(index.ctype, _cuda_types.Scalar): index_dtype = index.ctype.dtype if ndim != 1: raise TypeError( 'Scalar indexing is supported only for 1-dim array.') if index_dtype.kind not in 'ui': raise TypeError('Array indices must be integers.') return Data(f'{array.code}[{index.code}]', array.ctype.child_type) if isinstance(index.ctype, _cuda_types.Tuple): if ndim != len(index.ctype.types): raise IndexError(f'The size of index must be {ndim}') for t in index.ctype.types: if not isinstance(t, _cuda_types.Scalar): raise TypeError('Array indices must be scalar.') if t.dtype.kind not in 'iu': raise TypeError('Array indices must be integer.') if ndim == 0: return Data(f'{array.code}[0]', array.ctype.child_type) if ndim == 1: return Data(f'{array.code}[thrust::get<0>({index.code})]', array.ctype.child_type) return Data(f'{array.code}._indexing({index.code})', array.ctype.child_type) if isinstance(index.ctype, _cuda_types.CArray): raise TypeError('Advanced indexing is not supported.') assert False # Never reach. raise TypeError(f'{array.code} is not subscriptable.')
def _transpile_function_internal(func, attributes, mode, consts, in_types, ret_type): consts = dict([(k, Constant(v)) for k, v, in consts.items()]) if not isinstance(func, ast.FunctionDef): # TODO(asi1024): Support for `ast.ClassDef`. raise NotImplementedError('Not supported: {}'.format(type(func))) if len(func.decorator_list) > 0: if sys.version_info >= (3, 9): # Code path for Python versions that support `ast.unparse`. for deco in func.decorator_list: deco_code = ast.unparse(deco) if not any(word in deco_code for word in ['rawkernel', 'vectorize']): warnings.warn( f'Decorator {deco_code} may not supported in JIT.', RuntimeWarning) arguments = func.args if arguments.vararg is not None: raise NotImplementedError('`*args` is not supported currently.') if len(arguments.kwonlyargs) > 0: # same length with `kw_defaults`. raise NotImplementedError( 'keyword only arguments are not supported currently .') if arguments.kwarg is not None: raise NotImplementedError('`**kwargs` is not supported currently.') if len(arguments.defaults) > 0: raise NotImplementedError( 'Default values are not supported currently.') args = [arg.arg for arg in arguments.args] if len(args) != len(in_types): raise TypeError( f'{func.name}() takes {len(args)} positional arguments ' f'but {len(in_types)} were given.') params = dict([(x, Data(x, t)) for x, t in zip(args, in_types)]) env = Environment(mode, consts, params, ret_type) body = _transpile_stmts(func.body, True, env) params = ', '.join([env[a].ctype.declvar(a) for a in args]) local_vars = [v.ctype.declvar(n) + ';' for n, v in env.locals.items()] if env.ret_type is None: env.ret_type = _cuda_types.void head = f'{attributes} {env.ret_type} {func.name}({params})' code = CodeBlock(head, local_vars + body) return str(code), env
def _astype_scalar(x, ctype, casting, env): if is_constants(x): return Constant(ctype.dtype.type(x.obj)) from_t = x.ctype.dtype to_t = ctype.dtype if from_t == to_t: return x # Uses casting rules for scalar values. if not numpy.can_cast(from_t.type(0), to_t.type(0), casting): raise TypeError(f"Cannot cast from '{from_t}' to {to_t} " f"with casting rule {casting}.") if from_t.kind == 'c' and to_t.kind != 'c': if to_t.kind != 'b': warnings.warn( 'Casting complex values to real discards the imaginary part', numpy.ComplexWarning) return Data(f'({ctype})({x.code}.real())', ctype) return Data(f'({ctype})({x.code})', ctype)
def _transpile_expr_internal(expr, env): if isinstance(expr, ast.BoolOp): values = [_transpile_expr(e, env) for e in expr.values] value = values[0] for rhs in values[1:]: value = _eval_operand(expr.op, (value, rhs), env) return value if isinstance(expr, ast.BinOp): left = _transpile_expr(expr.left, env) right = _transpile_expr(expr.right, env) return _eval_operand(expr.op, (left, right), env) if isinstance(expr, ast.UnaryOp): value = _transpile_expr(expr.operand, env) return _eval_operand(expr.op, (value, ), env) if isinstance(expr, ast.Lambda): raise NotImplementedError('Not implemented.') if isinstance(expr, ast.Compare): values = [expr.left] + expr.comparators if len(values) != 2: raise NotImplementedError( 'Comparison of 3 or more values is not implemented.') values = [_transpile_expr(e, env) for e in values] return _eval_operand(expr.ops[0], values, env) if isinstance(expr, ast.IfExp): cond = _transpile_expr(expr.test, env) x = _transpile_expr(expr.body, env) y = _transpile_expr(expr.orelse, env) if isinstance(expr, Constant): return x if expr.obj else y if cond.ctype.dtype.kind == 'c': raise TypeError("Complex type value cannot be boolean condition.") x, y = _infer_type(x, y, env), _infer_type(y, x, env) if x.ctype.dtype != y.ctype.dtype: raise TypeError('Type mismatch in conditional expression.: ' f'{x.ctype.dtype} != {y.ctype.dtype}') cond = _astype_scalar(cond, _cuda_types.bool_, 'unsafe', env) return Data(f'({cond.code} ? {x.code} : {y.code})', x.ctype) if isinstance(expr, ast.Call): func = _transpile_expr(expr.func, env) args = [_transpile_expr(x, env) for x in expr.args] kwargs = dict([(kw.arg, _transpile_expr(kw.value, env)) for kw in expr.keywords]) builtin_funcs = _builtin_funcs.builtin_functions_dict if is_constants(func) and (func.obj in builtin_funcs): func = builtin_funcs[func.obj] if isinstance(func, _internal_types.BuiltinFunc): return func.call(env, *args, **kwargs) if not is_constants(func): raise TypeError(f"'{func}' is not callable.") func = func.obj if is_constants(*args, *kwargs.values()): # compile-time function call args = [x.obj for x in args] kwargs = dict([(k, v.obj) for k, v in kwargs.items()]) return Constant(func(*args, **kwargs)) if isinstance(func, _kernel.ufunc): # ufunc call dtype = kwargs.pop('dtype', Constant(None)).obj if len(kwargs) > 0: name = next(iter(kwargs)) raise TypeError( f"'{name}' is an invalid keyword to ufunc {func.name}") return _call_ufunc(func, args, dtype, env) if inspect.isclass(func) and issubclass(func, _typeclasses): # explicit typecast if len(args) != 1: raise TypeError( f'function takes {func} invalid number of argument') ctype = _cuda_types.Scalar(func) return _astype_scalar(args[0], ctype, 'unsafe', env) if isinstance(func, _interface._JitRawKernel) and func._device: args = [Data.init(x, env) for x in args] in_types = tuple([x.ctype for x in args]) fname, return_type = _transpile_func_obj(func._func, ['__device__'], env.mode, in_types, None, env.generated) in_params = ', '.join([x.code for x in args]) return Data(f'{fname}({in_params})', return_type) raise TypeError(f"Invalid function call '{fname}'.") if isinstance(expr, ast.Constant): return Constant(expr.value) if isinstance(expr, ast.Num): # Deprecated since py3.8 return Constant(expr.n) if isinstance(expr, ast.Str): # Deprecated since py3.8 return Constant(expr.s) if isinstance(expr, ast.NameConstant): # Deprecated since py3.8 return Constant(expr.value) if isinstance(expr, ast.Subscript): array = _transpile_expr(expr.value, env) index = _transpile_expr(expr.slice, env) return _indexing(array, index, env) if isinstance(expr, ast.Name): value = env[expr.id] if value is None: raise NameError(f'Unbound name: {expr.id}') return env[expr.id] if isinstance(expr, ast.Attribute): value = _transpile_expr(expr.value, env) if is_constants(value): return Constant(getattr(value.obj, expr.attr)) if isinstance(value.ctype, _cuda_types.ArrayBase): if 'ndim' == expr.attr: return Constant(value.ctype.ndim) if isinstance(value.ctype, _cuda_types.CArray): if 'size' == expr.attr: return Data(f'static_cast<long long>({value.code}.size())', _cuda_types.Scalar('q')) if isinstance(value.ctype, _interface._Dim3): if expr.attr in ('x', 'y', 'z'): return Data(f'{value.code}.{expr.attr}', _cuda_types.uint32) # TODO(leofang): support arbitrary Python class methods if isinstance(value.ctype, _ThreadGroup): return _internal_types.BuiltinFunc.from_class_method( value.code, getattr(value.ctype, expr.attr)) raise NotImplementedError('Not implemented: __getattr__') if isinstance(expr, ast.Tuple): elts = [_transpile_expr(x, env) for x in expr.elts] # TODO: Support compile time constants. elts = [Data.init(x, env) for x in elts] elts_code = ', '.join([x.code for x in elts]) ctype = _cuda_types.Tuple([x.ctype for x in elts]) return Data(f'thrust::make_tuple({elts_code})', ctype) if isinstance(expr, ast.Index): return _transpile_expr(expr.value, env) raise ValueError('Not supported: type {}'.format(type(expr)))
def _transpile_expr_internal(expr, env): if isinstance(expr, ast.BoolOp): values = [_transpile_expr(e, env) for e in expr.values] value = values[0] for rhs in values[1:]: value = _eval_operand(expr.op, (value, rhs), env) return value if isinstance(expr, ast.BinOp): left = _transpile_expr(expr.left, env) right = _transpile_expr(expr.right, env) return _eval_operand(expr.op, (left, right), env) if isinstance(expr, ast.UnaryOp): value = _transpile_expr(expr.operand, env) return _eval_operand(expr.op, (value, ), env) if isinstance(expr, ast.Lambda): raise NotImplementedError('Not implemented.') if isinstance(expr, ast.Compare): values = [expr.left] + expr.comparators if len(values) != 2: raise NotImplementedError( 'Comparison of 3 or more values is not implemented.') values = [_transpile_expr(e, env) for e in values] return _eval_operand(expr.ops[0], values, env) if isinstance(expr, ast.IfExp): cond = _transpile_expr(expr.test, env) x = _transpile_expr(expr.body, env) y = _transpile_expr(expr.orelse, env) if isinstance(expr, Constant): return x if expr.obj else y if cond.ctype.dtype.kind == 'c': raise NotImplementedError('') x = Data.init(x, env) y = Data.init(y, env) if x.ctype.dtype != y.ctype.dtype: raise TypeError('Type mismatch in conditional expression.: ' f'{x.ctype.dtype} != {y.ctype.dtype}') cond = _astype_scalar(cond, _cuda_types.bool_, 'unsafe', env) return Data(f'({cond.code} ? {x.code} : {y.code})', x.ctype) if isinstance(expr, ast.Call): func = _transpile_expr(expr.func, env) args = [_transpile_expr(x, env) for x in expr.args] kwargs = dict([(kw.arg, _transpile_expr(kw.value, env)) for kw in expr.keywords]) builtin_funcs = _builtin_funcs.builtin_functions_dict if is_constants(func) and (func.obj in builtin_funcs): func = builtin_funcs[func.obj] if isinstance(func, _internal_types.BuiltinFunc): return func.call(env, *args, **kwargs) if not is_constants(func): raise NotImplementedError( 'device function call is not implemented.') func = func.obj if is_constants(*args, *kwargs.values()): # compile-time function call args = [x.obj for x in args] kwargs = dict([(k, v.obj) for k, v in kwargs.items()]) return Constant(func(*args, **kwargs)) if isinstance(func, _kernel.ufunc): # ufunc call dtype = kwargs.pop('dtype', Constant(None)).obj if len(kwargs) > 0: name = next(iter(kwargs)) raise TypeError( f"'{name}' is an invalid keyword to ufunc {func.name}") return _call_ufunc(func, args, dtype, env) if inspect.isclass(func) and issubclass(func, _typeclasses): # explicit typecast if len(args) != 1: raise TypeError( f'function takes {func} invalid number of argument') ctype = _cuda_types.Scalar(func) return _astype_scalar(args[0], ctype, 'unsafe', env) raise NotImplementedError( f'function call of `{func.__name__}` is not implemented') if isinstance(expr, ast.Constant): return Constant(expr.value) if isinstance(expr, ast.Num): # Deprecated since py3.8 return Constant(expr.n) if isinstance(expr, ast.Str): # Deprecated since py3.8 return Constant(expr.s) if isinstance(expr, ast.NameConstant): # Deprecated since py3.8 return Constant(expr.value) if isinstance(expr, ast.Subscript): value = _transpile_expr(expr.value, env) index = _transpile_expr(expr.slice, env) if is_constants(value): if is_constants(index): return Constant(value.obj[index.obj]) raise TypeError( f'{type(value.obj)} is not subscriptable with non-constants.') value = Data.init(value, env) if isinstance(value.ctype, _cuda_types.Tuple): raise NotImplementedError if isinstance(value.ctype, _cuda_types.ArrayBase): index = Data.init(index, env) ndim = value.ctype.ndim if isinstance(index.ctype, _cuda_types.Scalar): index_dtype = index.ctype.dtype if ndim != 1: raise TypeError( 'Scalar indexing is supported only for 1-dim array.') if index_dtype.kind not in 'ui': raise TypeError('Array indices must be integers.') return Data(f'{value.code}[{index.code}]', value.ctype.child_type) if isinstance(index.ctype, _cuda_types.Tuple): if ndim != len(index.ctype.types): raise IndexError(f'The size of index must be {ndim}') for t in index.ctype.types: if not isinstance(t, _cuda_types.Scalar): raise TypeError('Array indices must be scalar.') if t.dtype.kind not in 'iu': raise TypeError('Array indices must be integer.') if ndim == 0: return Data(f'{value.code}[0]', value.ctype.child_type) if ndim == 1: return Data(f'{value.code}[thrust::get<0>({index.code})]', value.ctype.child_type) return Data(f'{value.code}._indexing({index.code})', value.ctype.child_type) if isinstance(index.ctype, _cuda_types.Array): raise TypeError('Advanced indexing is not supported.') assert False # Never reach. raise TypeError(f'{value.code} is not subscriptable.') if isinstance(expr, ast.Name): value = env[expr.id] if value is None: raise NameError(f'Unbound name: {expr.id}') return env[expr.id] if isinstance(expr, ast.Attribute): value = _transpile_expr(expr.value, env) if is_constants(value): return Constant(getattr(value.obj, expr.attr)) raise NotImplementedError('Not implemented: __getattr__') if isinstance(expr, ast.Tuple): elts = [_transpile_expr(x, env) for x in expr.elts] # TODO: Support compile time constants. elts = [Data.init(x, env) for x in elts] elts_code = ', '.join([x.code for x in elts]) ctype = _cuda_types.Tuple([x.ctype for x in elts]) return Data(f'thrust::make_tuple({elts_code})', ctype) if isinstance(expr, ast.Index): return _transpile_expr(expr.value, env) raise ValueError('Not supported: type {}'.format(type(expr)))