コード例 #1
0
def zoom(input,
         zoom,
         output=None,
         order=3,
         mode='constant',
         cval=0.0,
         prefilter=True,
         *,
         grid_mode=False):
    """Zoom an array.

    The array is zoomed using spline interpolation of the requested order.

    Args:
        input (cupy.ndarray): The input array.
        zoom (float or sequence): The zoom factor along the axes. If a float,
            ``zoom`` is the same for each axis. If a sequence, ``zoom`` should
            contain one value for each axis.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation, default is 3. Must
            be in the range 0-5.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``,
            ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``).
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.
        grid_mode (bool, optional): If False, the distance from the pixel
            centers is zoomed. Otherwise, the distance including the full pixel
            extent is used. For example, a 1d signal of length 5 is considered
            to have length 4 when ``grid_mode`` is False, but length 5 when
            ``grid_mode`` is True. See the following visual illustration:

            .. code-block:: text

                    | pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 |
                         |<-------------------------------------->|
                                            vs.
                    |<----------------------------------------------->|

            The starting point of the arrow in the diagram above corresponds to
            coordinate location 0 in each mode.

    Returns:
        cupy.ndarray or None:
            The zoomed input.

    .. seealso:: :func:`scipy.ndimage.zoom`
    """

    _check_parameter('zoom', order, mode)

    zoom = _util._fix_sequence_arg(zoom, input.ndim, 'zoom', float)

    output_shape = []
    for s, z in zip(input.shape, zoom):
        output_shape.append(int(round(s * z)))
    output_shape = tuple(output_shape)

    if mode == 'opencv':
        zoom = []
        offset = []
        for in_size, out_size in zip(input.shape, output_shape):
            if out_size > 1:
                zoom.append(float(in_size) / out_size)
                offset.append((zoom[-1] - 1) / 2.0)
            else:
                zoom.append(0)
                offset.append(0)
        mode = 'nearest'

        output = affine_transform(
            input,
            cupy.asarray(zoom),
            offset,
            output_shape,
            output,
            order,
            mode,
            cval,
            prefilter,
        )
    else:
        if grid_mode:

            # warn about modes that may have surprising behavior
            suggest_mode = None
            if mode == 'constant':
                suggest_mode = 'grid-constant'
            elif mode == 'wrap':
                suggest_mode = 'grid-wrap'
            if suggest_mode is not None:
                warnings.warn(
                    f'It is recommended to use mode = {suggest_mode} instead '
                    f'of {mode} when grid_mode is True.')

        zoom = []
        for in_size, out_size in zip(input.shape, output_shape):
            if grid_mode and out_size > 0:
                zoom.append(in_size / out_size)
            elif out_size > 1:
                zoom.append((in_size - 1) / (out_size - 1))
            else:
                zoom.append(0)

        output = _util._get_output(output, input, shape=output_shape)
        if input.dtype.kind in 'iu':
            input = input.astype(cupy.float32)
        filtered, nprepad = _filter_input(input, prefilter, mode, cval, order)
        integer_output = output.dtype.kind in 'iu'
        _util._check_cval(mode, cval, integer_output)
        large_int = max(_prod(input.shape), _prod(output_shape)) > 1 << 31
        kern = _interp_kernels._get_zoom_kernel(input.ndim,
                                                large_int,
                                                output_shape,
                                                mode,
                                                order=order,
                                                integer_output=integer_output,
                                                grid_mode=grid_mode,
                                                nprepad=nprepad)
        zoom = cupy.asarray(zoom, dtype=cupy.float64)
        kern(filtered, zoom, output)
    return output
コード例 #2
0
ファイル: interpolation.py プロジェクト: yoshipon/cupy
def zoom(input,
         zoom,
         output=None,
         order=None,
         mode='constant',
         cval=0.0,
         prefilter=True):
    """Zoom an array.

    The array is zoomed using spline interpolation of the requested order.

    Args:
        input (cupy.ndarray): The input array.
        zoom (float or sequence): The zoom factor along the axes. If a float,
            ``zoom`` is the same for each axis. If a sequence, ``zoom`` should
            contain one value for each axis.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation. If it is not given,
            order 1 is used. It is different from :mod:`scipy.ndimage` and can
            change in the future. Currently it supports only order 0 and 1.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'`` or ``'opencv'``). Default is ``'constant'``.
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.

    Returns:
        cupy.ndarray or None:
            The zoomed input.

    .. seealso:: :func:`scipy.ndimage.zoom`
    """

    _check_parameter('zoom', order, mode)

    if not hasattr(zoom, '__iter__') and type(zoom) is not cupy.ndarray:
        zoom = [zoom] * input.ndim
    output_shape = []
    for s, z in zip(input.shape, zoom):
        output_shape.append(int(round(s * z)))
    output_shape = tuple(output_shape)

    if mode == 'opencv':
        zoom = []
        offset = []
        for in_size, out_size in zip(input.shape, output_shape):
            if out_size > 1:
                zoom.append(float(in_size) / out_size)
                offset.append((zoom[-1] - 1) / 2.0)
            else:
                zoom.append(0)
                offset.append(0)
        mode = 'nearest'

        output = affine_transform(
            input,
            cupy.asarray(zoom),
            offset,
            output_shape,
            output,
            order,
            mode,
            cval,
            prefilter,
        )
    else:
        if order is None:
            order = 1

        zoom = []
        for in_size, out_size in zip(input.shape, output_shape):
            if out_size > 1:
                zoom.append(float(in_size - 1) / (out_size - 1))
            else:
                zoom.append(0)

        output = _get_output(output, input, shape=output_shape)
        if input.dtype.kind in 'iu':
            input = input.astype(cupy.float32)
        integer_output = output.dtype.kind in 'iu'
        large_int = max(_prod(input.shape), _prod(output_shape)) > 1 << 31
        kern = _interp_kernels._get_zoom_kernel(input.ndim,
                                                large_int,
                                                output_shape,
                                                mode,
                                                order=order,
                                                integer_output=integer_output)
        zoom = cupy.asarray(zoom, dtype=cupy.float64)
        kern(input, zoom, output)
    return output