コード例 #1
0
ファイル: shufflenetv2.py プロジェクト: Ryanzhang111/arcface
def build_net(images,
              n_class=None,
              is_training=True,
              reuse=False,
              alpha=1,
              scope='mobile_id'):

    with tf.variable_scope(scope, reuse=reuse) as scope:

        with slim.arg_scope([slim.batch_norm], is_training=is_training):

            net = conv2d_same(images, 58, 3, stride=2, scope='conv1')
            # net = slim.max_pool2d(net, 3, stride=2, padding='SAME', scope='pool1')

            net = shuffle_block(net, 2, 'stage2_block1')
            for i in range(3):
                net = shuffle_block(net, 1, 'stage2_block%d' % (i + 2))

            net = shuffle_block(net, 2, 'stage3_block1')
            for i in range(7):
                net = shuffle_block(net, 1, 'stage3_block%d' % (i + 2))

            net = shuffle_block(net, 2, 'stage4_block1')
            for i in range(3):
                net = shuffle_block(net, 1, 'stage4_block%d' % (i + 2))

            net = conv2d_same(net, 1024, 1, stride=1, scope='conv5')

            # net = slim.avg_pool2d(net, 7, stride=1, padding='VALID', scope='global_pool')

            net = slim.flatten(net)
            net = slim.fully_connected(
                net,
                128,
                # weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
                normalizer_fn=slim.batch_norm,
                # normalizer_params={'param_initializers': {'gamma': tf.constant_initializer(0.1)}},
                activation_fn=None,
                scope='fc1')

            if isinstance(n_class, int):
                net = slim.flatten(net)
                net = slim.fully_connected(net,
                                           n_class,
                                           activation_fn=None,
                                           scope='logits')

            return net
コード例 #2
0
def build_net(images,
              n_class=None,
              is_training=True,
              reuse=False,
              scope='resnet_50_half'):

    with tf.variable_scope(scope, reuse=reuse):

        with slim.arg_scope([slim.batch_norm], is_training=is_training):

            net_spec = [[[i, i, i * 4] for i in [32, 64, 128, 256]],
                        [3, 4, 6, 3]]

            with slim.arg_scope([slim.conv2d],
                                normalizer_fn=None,
                                activation_fn=None):

                net = conv2d_same(images, 32, 5, stride=2, scope='conv1')

            for i, spec in enumerate(zip(*net_spec)):

                stride = 2 if i != 0 else 1

                block_spec, n_block = spec
                for j in range(n_block):
                    net = pre_bottleneck_block(net,
                                               block_spec,
                                               stride=stride,
                                               scope='res_%d_%d' %
                                               (i + 1, j + 1))
                    stride = 1

            net = slim.batch_norm(net,
                                  activation_fn=tf.nn.relu,
                                  scope='postnorm')
            net = slim.conv2d(net, 256, 1, stride=1, scope='last_conv')
            net = slim.flatten(net)
            net = slim.fully_connected(
                net,
                128,
                # weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                activation_fn=None,
                scope='fc5')

            if isinstance(n_class, int):
                net = slim.flatten(net)
                net = slim.fully_connected(net,
                                           n_class,
                                           activation_fn=None,
                                           scope='logits')

            # add summarys
            slim.summarize_collection(tf.GraphKeys.MODEL_VARIABLES)

            return net
コード例 #3
0
def build_net(images,
              n_class=None,
              is_training=True,
              reuse=False,
              scope='resnet_152_half'):

    with tf.variable_scope(scope, reuse=reuse):

        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):

            net_spec = [[[i, i] for i in [32, 64, 128, 256]], [2, 2, 2, 2]]

            net = conv2d_same(images, 32, 3, stride=2, scope='conv1')

            for i, spec in enumerate(zip(*net_spec)):

                stride = 2 if i != 0 else 1

                block_spec, n_block = spec
                for j in range(n_block):
                    net = pre_basic_block(net,
                                          block_spec,
                                          stride=stride,
                                          scope='res_%d_%d' % (i + 1, j + 1))
                    stride = 1

            net = slim.batch_norm(net,
                                  activation_fn=tf.nn.relu,
                                  scope='postnorm')
            net = slim.flatten(net)
            # net = slim.dropout(net, 0.4)
            net = slim.fully_connected(
                net,
                128,
                # weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
                normalizer_fn=slim.batch_norm,
                activation_fn=None,
                scope='fc5')

            if isinstance(n_class, int):
                net = slim.flatten(net)
                net = slim.fully_connected(net,
                                           n_class,
                                           activation_fn=None,
                                           scope='logits')

            return net
コード例 #4
0
def build_net(images,
              n_class=None,
              is_training=True,
              reuse=False,
              alpha=1.25,
              scope='mobile_id'):

    with tf.variable_scope(scope, reuse=reuse) as scope:

        with slim.arg_scope([slim.batch_norm], is_training=is_training):

            net = conv2d_same(images,
                              int(32 * alpha),
                              3,
                              stride=2,
                              scope='conv1')

            net = mobile_block(net,
                               int(16 * alpha),
                               3,
                               stride=1,
                               t=1,
                               scope='mblock1_1')
            net = mobile_block(net,
                               int(16 * alpha),
                               3,
                               stride=1,
                               scope='mblock1_2')

            net = mobile_block(net,
                               int(24 * alpha),
                               3,
                               stride=2,
                               scope='mblock2_1')
            net = mobile_block(net,
                               int(24 * alpha),
                               3,
                               stride=1,
                               scope='mblock2_2')
            net = mobile_block(net,
                               int(24 * alpha),
                               3,
                               stride=1,
                               scope='mblock2_3')

            net = mobile_block(net,
                               int(32 * alpha),
                               3,
                               stride=2,
                               scope='mblock3_1')
            net = mobile_block(net,
                               int(32 * alpha),
                               3,
                               stride=1,
                               scope='mblock3_2')
            net = mobile_block(net,
                               int(32 * alpha),
                               3,
                               stride=1,
                               scope='mblock3_3')
            net = mobile_block(net,
                               int(32 * alpha),
                               3,
                               stride=1,
                               scope='mblock3_4')

            net = mobile_block(net,
                               int(64 * alpha),
                               3,
                               stride=2,
                               scope='mblock4_1')
            for i in range(3):
                net = mobile_block(net,
                                   int(64 * alpha),
                                   3,
                                   stride=1,
                                   scope='mblock4_%d' % (i + 2))

            for i in range(4):
                net = mobile_block(net,
                                   int(96 * alpha),
                                   3,
                                   stride=1,
                                   scope='mblock5_%d' % (i + 1))

            net = mobile_block(net,
                               int(160 * alpha),
                               3,
                               stride=2,
                               scope='mblock6_1')
            for i in range(3):
                net = mobile_block(net,
                                   int(160 * alpha),
                                   3,
                                   stride=1,
                                   scope='mblock6_%d' % (i + 2))

            net = mobile_block(net,
                               int(320 * alpha),
                               3,
                               stride=1,
                               scope='mblock7_1')
            # net = mobile_block(net, int(320*alpha), 3, stride=1, scope='mblock7_2')

            net = slim.conv2d(net, 1280, 1, stride=1, scope='final_point_conv')

            net = slim.flatten(net)
            net = slim.fully_connected(
                net,
                128,
                weights_initializer=tf.truncated_normal_initializer(
                    stddev=0.001),
                normalizer_fn=slim.batch_norm,
                # normalizer_params={'param_initializers': {'gamma': tf.constant_initializer(0.0001)}},
                activation_fn=None,
                scope='fc1')

            if isinstance(n_class, int):
                net = slim.flatten(net)
                net = slim.fully_connected(net,
                                           n_class,
                                           activation_fn=None,
                                           scope='logits')

            # add summarys
            slim.summarize_collection(tf.GraphKeys.MODEL_VARIABLES)

            return net
コード例 #5
0
def build_net(images,
              n_class=None,
              is_training=True,
              reuse=False,
              alpha=1,
              scope='mobile_id'):

    with tf.variable_scope(scope, reuse=reuse) as scope:

        with slim.arg_scope([slim.batch_norm], is_training=is_training):

            net = conv2d_same(images,
                              int(64 * alpha),
                              3,
                              stride=2,
                              scope='conv1')

            net = slim.separable_conv2d(net,
                                        None,
                                        3,
                                        1,
                                        stride=1,
                                        padding='SAME',
                                        scope='depth_conv1')

            net = mobile_block(net,
                               int(64 * alpha),
                               3,
                               stride=2,
                               t=2,
                               scope='mblock1_1')
            for i in range(4):
                net = mobile_block(net,
                                   int(64 * alpha),
                                   3,
                                   stride=1,
                                   t=2,
                                   scope='mblock1_%d' % (i + 2))

            net = mobile_block(net,
                               int(128 * alpha),
                               3,
                               stride=2,
                               t=4,
                               scope='mblock2_1')
            for i in range(6):
                net = mobile_block(net,
                                   int(128 * alpha),
                                   3,
                                   stride=1,
                                   t=2,
                                   scope='mblock2_%d' % (i + 2))

            net = mobile_block(net,
                               int(128 * alpha),
                               3,
                               stride=2,
                               t=4,
                               scope='mblock3_1')
            for i in range(2):
                net = mobile_block(net,
                                   int(128 * alpha),
                                   3,
                                   stride=1,
                                   t=2,
                                   scope='mblock3_%d' % (i + 2))

            net = slim.conv2d(net, 512, 1, stride=1, scope='final_point_conv')

            net = slim.separable_conv2d(net,
                                        None, [7, 6],
                                        1,
                                        stride=1,
                                        padding='VALID',
                                        scope='GDConv')
            print(net.shape)

            net = slim.flatten(net)
            net = slim.fully_connected(
                net,
                128,
                # weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
                normalizer_fn=slim.batch_norm,
                weights_regularizer=slim.l2_regularizer(4e-4),
                # normalizer_params={'param_initializers': {'gamma': tf.constant_initializer(0.1)}},
                activation_fn=None,
                scope='fc1')

            if isinstance(n_class, int):
                net = slim.flatten(net)
                net = slim.fully_connected(net,
                                           n_class,
                                           activation_fn=None,
                                           scope='logits')

            # add summarys
            slim.summarize_collection(tf.GraphKeys.MODEL_VARIABLES)

            return net