コード例 #1
0
inp_dim = net_options['height']

# Assign from the command line args
lr = args.lr
wd = args.wd
momentum = args.mom
momentum = 0.9
wd = 0.0005


inp_dim = int(inp_dim)
num_classes = int(num_classes)
bs = int(bs)
transforms = Sequence([YoloResize(inp_dim)])

data = CustomDataset(root = "data", ann_file="data/train.txt", det_transforms=transforms)

data_loader = DataLoader(data, batch_size=bs)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=wd)

def logloss(pred, target):
    assert pred.shape == target.shape, "Input and target must be the same shape"
    pred = pred.view(-1,1)
    target = target.view(-1,1)
    
    
    sigmoid = torch.nn.Sigmoid()(pred)    
    
    sigmoid = sigmoid.repeat(1,2)
    
    sigmoid[:,0] = 1 - sigmoid[:,0]
コード例 #2
0
    print('-------------------------------')

    return total_loss

### DATA ###

# Overloading custom data transforms from customloader (may add more here)
# custom_transforms = Sequence([RandomHSV(hue=hue, saturation=saturation, brightness=exposure), 
#     YoloResizeTransform(inp_dim), Normalize()])
# custom_transforms = Sequence([Normalize(), YoloResize(inp_dim) ])

# Data instance and loader
data = CustomDataset(root=args.dataDir, num_classes=num_classes,
                     ann_file="data/train_img_list.txt",
                     cfg_file=args.cfgfile,
                     det_transforms='',
                     random_data = args.random_img,
                     rgb_mean=rgb_mean,
                     inp_dim = inp_dim )
print('Batch size ', bs)
data_loader = DataLoader(data, 
                         batch_size=bs,
                         shuffle=True,
                         collate_fn=data.collate_fn)

iterations = len(data)//bs
print('Size of data / batch size (iterations) = {}'.format(iterations))

### TRAIN MODEL ###

# Freeze layers according to user specification
コード例 #3
0
    # Load weights PyTorch style
    model.load_state_dict(torch.load(args.weightsfile))
    model = model.to(device)  ## Really? You're gonna eval on the CPU? :)

    # Set to evaluation (don't accumulate gradients)
    # Make sure to call eval() method after loading weights
    model.eval()

    # Load test data
    transforms = Sequence(
        [Equalize(), YoloResizeTransform(model_dim),
         Normalize()])
    test_data = CustomDataset(root="data",
                              ann_file="data/test.txt",
                              det_transforms=transforms,
                              cfg_file=args.cfgfile,
                              num_classes=num_classes)
    # test_loader = DataLoader(test_data, batch_size=1)

    ground_truths_all = []
    predictions_all = []
    num_gts = 0

    # Make a directory for the image files with their bboxes
    eval_output_dir = os.path.split(test_data.examples[0].rstrip())[0].replace(
        'obj', 'eval_output')
    os.makedirs(eval_output_dir, exist_ok=True)

    for i in range(len(test_data)):
        img_file = test_data.examples[i].rstrip()
コード例 #4
0
ファイル: train_2016314726.py プロジェクト: yjunej/Trace
import sys
import torch.nn.functional as F
sys.path.append("./utils_2016314726")
from customloader import CustomDataset



train_transform = transforms.Compose([
    transforms.RandomHorizontalFlip(0.5),
    transforms.RandomCrop(32, padding=4),
    transforms.ToTensor(),
    transforms.Normalize((0.4911, 0.4824, 0.4462), (0.2469, 0.2434, 0.2617)),])
test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4911, 0.4824, 0.4462), (0.2469, 0.2434, 0.2617)),])
trainset = CustomDataset("./data/train/x.npy",
                         "./data/train/y.npy", transform=train_transform)
validset = CustomDataset("./data/train/x.npy",
                         "./data/train/y.npy", transform=test_transform)

batch_size = 128
balance_val_index = []
for label in range(0, 91):
    label_index = (trainset.targets == label).nonzero()
    random_index = torch.randperm(label_index.size(0))
    if balance_val_index:
        balance_val_index[0] = torch.cat([balance_val_index[0], label_index[random_index][:1].view(-1, )])
    else:
        balance_val_index.append(label_index[random_index][:1].view(-1, ))


balance_val_index = balance_val_index[0]
コード例 #5
0
    total_loss += cls_loss

    return total_loss


### DATA ###

# Overloading custom data transforms from customloader (may add more here)
# custom_transforms = Sequence([RandomHSV(hue=hue, saturation=saturation, brightness=exposure),
#     YoloResizeTransform(inp_dim)])
custom_transforms = Sequence([YoloResizeTransform(inp_dim), Normalize()])

# Data instance and loader
data = CustomDataset(root="data",
                     num_classes=num_classes,
                     ann_file="data/train.txt",
                     cfg_file=args.cfgfile,
                     det_transforms=custom_transforms)
print('Batch size ', bs)
data_loader = DataLoader(data,
                         batch_size=bs,
                         shuffle=True,
                         collate_fn=data.collate_fn)

### TRAIN MODEL ###

# Use this optimizer calculation for training loss
optimizer = optim.SGD(model.parameters(),
                      lr=lr,
                      momentum=momentum,
                      weight_decay=wd)
コード例 #6
0
wd = args.wd
momentum = args.mom
momentum = 0.9
wd = 0.0005

inp_dim = int(inp_dim)
num_classes = int(num_classes)
bs = int(bs)

# Overloading custom data transforms from customloader (may add more here)
custom_transforms = Sequence([YoloResizeTransform(inp_dim)])

# Data instance and loader
data = CustomDataset(
    root="data",
    num_classes=num_classes,
    ann_file=
    "/home/gunjan/Desktop/Humanoid/pytorch-yolo-v3-custom/data_output/data/train.txt",
    det_transforms=custom_transforms)
print('Batch size ', bs)
data_loader = DataLoader(data,
                         batch_size=bs,
                         shuffle=False,
                         collate_fn=data.collate_fn)

# Use this optimizer calculation for training loss
optimizer = optim.SGD(model.parameters(),
                      lr=lr,
                      momentum=momentum,
                      weight_decay=wd)

コード例 #7
0
ファイル: test_2016314726.py プロジェクト: yjunej/Trace
        out = self.dense(out)

        return out


device = 'cuda' if torch.cuda.is_available() else 'cpu'

test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4911, 0.4824, 0.4462), (0.2469, 0.2434, 0.2617)),
])

model = torch.load('model_2016314726.pth', map_location=torch.device(device))

testset = CustomDataset("./data/test/x.npy",
                        "./data/test/y.npy",
                        transform=test_transform)
test_loader = torch.utils.data.DataLoader(
    testset,
    batch_size=128,
)

model.eval()
correct = 0
total = 0

with torch.no_grad():

    for image, label in test_loader:

        x = image.to(device)