コード例 #1
0
def main():
    progress = default_progress()
    experiment_dir = 'experiment/filt4_resnet'
    # Here's our data
    train_loader = torch.utils.data.DataLoader(CachedImageFolder(
        'dataset/miniplaces/simple/train',
        transform=transforms.Compose([
            transforms.Resize(128),
            transforms.RandomCrop(112),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(IMAGE_MEAN, IMAGE_STDEV),
        ])),
                                               batch_size=32,
                                               shuffle=True,
                                               num_workers=24,
                                               pin_memory=True)
    val_loader = torch.utils.data.DataLoader(
        CachedImageFolder(
            'dataset/miniplaces/simple/val',
            transform=transforms.Compose([
                transforms.Resize(128),
                # transforms.CenterCrop(112),
                transforms.ToTensor(),
                transforms.Normalize(IMAGE_MEAN, IMAGE_STDEV),
            ])),
        batch_size=32,
        shuffle=False,
        num_workers=24,
        pin_memory=True)
    # Create a simplified ResNet with half resolution.
    model = CustomResNet(18,
                         num_classes=100,
                         halfsize=True,
                         extra_output=['maxpool'])  # right after conv1

    model.train()
    model.cuda()

    # An abbreviated training schedule: 40000 batches.
    # TODO: tune these hyperparameters.
    # init_lr = 0.002
    init_lr = 1e-4
    # max_iter = 40000 - 34.5% @1
    # max_iter = 50000 - 37% @1
    # max_iter = 80000 - 39.7% @1
    # max_iter = 100000 - 40.1% @1
    max_iter = 50000
    criterion = FiltDoubleBackpropLoss(1e4)
    optimizer = torch.optim.Adam(model.parameters())
    iter_num = 0
    best = dict(val_accuracy=0.0)
    model.train()
    # Oh, hold on.  Let's actually resume training if we already have a model.
    checkpoint_filename = 'miniplaces.pth.tar'
    best_filename = 'best_%s' % checkpoint_filename
    best_checkpoint = os.path.join(experiment_dir, best_filename)
    try_to_resume_training = False
    if try_to_resume_training and os.path.exists(best_checkpoint):
        checkpoint = torch.load(os.path.join(experiment_dir, best_filename))
        iter_num = checkpoint['iter']
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        best['val_accuracy'] = checkpoint['accuracy']

    def save_checkpoint(state, is_best):
        filename = os.path.join(experiment_dir, checkpoint_filename)
        ensure_dir_for(filename)
        torch.save(state, filename)
        if is_best:
            shutil.copyfile(filename,
                            os.path.join(experiment_dir, best_filename))

    def validate_and_checkpoint():
        model.eval()
        # val_loss, val_acc = AverageMeter(), AverageMeter()
        val_acc = AverageMeter()
        for input, target in progress(val_loader):
            # Load data
            input_var, target_var = [d.cuda() for d in [input, target]]
            # Evaluate model
            with torch.no_grad():
                output = model(input_var)
                # loss, unreg_loss = criterion(output, target_var)
                _, pred = output[0].max(1)
                accuracy = (target_var.eq(pred)
                            ).data.float().sum().item() / input.size(0)
            # val_loss.update(loss.data.item(), input.size(0))
            val_acc.update(accuracy, input.size(0))
            # Check accuracy
            # post_progress(l=val_loss.avg, a=val_acc.avg*100.0)
            post_progress(a=val_acc.avg * 100.0)
        # Save checkpoint
        save_checkpoint(
            {
                'iter': iter_num,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'accuracy': val_acc.avg,
                # 'loss': val_loss.avg,
            },
            val_acc.avg > best['val_accuracy'])
        best['val_accuracy'] = max(val_acc.avg, best['val_accuracy'])
        print_progress('Iteration %d val accuracy %.2f' %
                       (iter_num, val_acc.avg * 100.0))

    # Here is our training loop.
    while iter_num < max_iter:
        for input, target in progress(train_loader):
            # Track the average training loss/accuracy for each epoch.
            train_loss, train_acc = AverageMeter(), AverageMeter()
            train_loss_u = AverageMeter()
            train_loss_g = AverageMeter()
            # Load data
            input_var, target_var = [d.cuda() for d in [input, target]]
            # Evaluate model
            output = model(input_var)
            loss, unreg_loss, grad_loss = criterion(output, target_var)
            train_loss.update(loss.data.item(), input.size(0))
            train_loss_u.update(unreg_loss.data.item(), input.size(0))
            train_loss_g.update(grad_loss.data.item(), input.size(0))
            # Perform one step of SGD
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # Also check training set accuracy
            _, pred = output[0].max(1)
            accuracy = (target_var.eq(pred)).data.float().sum().item() / (
                input.size(0))
            train_acc.update(accuracy)
            remaining = 1 - iter_num / float(max_iter)
            post_progress(g=train_loss_g.avg,
                          u=train_loss_u.avg,
                          a=train_acc.avg * 100.0)
            # Advance
            iter_num += 1
            if iter_num >= max_iter:
                break
            # Linear learning rate decay
            lr = init_lr * remaining
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
            # Ocassionally check validation set accuracy and checkpoint
            if iter_num % 1000 == 0:
                validate_and_checkpoint()
                model.train()
コード例 #2
0
ファイル: train_positive.py プロジェクト: davidbau/miniplaces
def main():
    progress = default_progress()
    experiment_dir = 'experiment/positive_resnet'
    # Here's our data
    train_loader = torch.utils.data.DataLoader(CachedImageFolder(
        'dataset/miniplaces/simple/train',
        transform=transforms.Compose([
            transforms.Resize(128),
            transforms.RandomCrop(112),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(IMAGE_MEAN, IMAGE_STDEV),
        ])),
                                               batch_size=32,
                                               shuffle=True,
                                               num_workers=24,
                                               pin_memory=True)
    val_loader = torch.utils.data.DataLoader(
        CachedImageFolder(
            'dataset/miniplaces/simple/val',
            transform=transforms.Compose([
                transforms.Resize(128),
                # transforms.CenterCrop(112),
                transforms.ToTensor(),
                transforms.Normalize(IMAGE_MEAN, IMAGE_STDEV),
            ])),
        batch_size=32,
        shuffle=False,
        num_workers=24,
        pin_memory=True)
    # Create a simplified ResNet with half resolution.
    model = CustomResNet(18, num_classes=100, halfsize=True)
    checkpoint_filename = 'best_miniplaces.pth.tar'
    best_checkpoint = os.path.join('experiment/resnet', checkpoint_filename)
    checkpoint = torch.load(best_checkpoint)
    model.load_state_dict(checkpoint['state_dict'])
    model.train()
    model.cuda()

    # An abbreviated training schedule: 40000 batches.
    # TODO: tune these hyperparameters.
    # init_lr = 0.002
    init_lr = 1e-4
    # max_iter = 40000 - 34.5% @1
    # max_iter = 50000 - 37% @1
    # max_iter = 80000 - 39.7% @1
    # max_iter = 100000 - 40.1% @1
    max_iter = 50000
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = torch.optim.Adam(model.parameters())
    iter_num = 0
    best = dict(val_accuracy=0.0)
    model.train()
    # Oh, hold on.  Let's actually resume training if we already have a model.
    checkpoint_filename = 'miniplaces.pth.tar'
    best_filename = 'best_%s' % checkpoint_filename
    best_checkpoint = os.path.join(experiment_dir, best_filename)
    try_to_resume_training = False
    if try_to_resume_training and os.path.exists(best_checkpoint):
        checkpoint = torch.load(os.path.join(experiment_dir, best_filename))
        iter_num = checkpoint['iter']
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        best['val_accuracy'] = checkpoint['accuracy']

    def save_checkpoint(state, is_best):
        filename = os.path.join(experiment_dir, checkpoint_filename)
        ensure_dir_for(filename)
        torch.save(state, filename)
        if is_best:
            shutil.copyfile(filename,
                            os.path.join(experiment_dir, best_filename))

    def validate_and_checkpoint():
        model.eval()
        val_loss, val_acc = AverageMeter(), AverageMeter()
        for input, target in progress(val_loader):
            # Load data
            input_var, target_var = [d.cuda() for d in [input, target]]
            # Evaluate model
            with torch.no_grad():
                output = model(input_var)
                loss = criterion(output, target_var)
                _, pred = output.max(1)
                accuracy = (target_var.eq(pred)
                            ).data.float().sum().item() / input.size(0)
            val_loss.update(loss.data.item(), input.size(0))
            val_acc.update(accuracy, input.size(0))
            # Check accuracy
            post_progress(l=val_loss.avg, a=val_acc.avg)
        # Save checkpoint
        save_checkpoint(
            {
                'iter': iter_num,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'accuracy': val_acc.avg,
                'loss': val_loss.avg,
            }, val_acc.avg > best['val_accuracy'])
        best['val_accuracy'] = max(val_acc.avg, best['val_accuracy'])
        print_progress('Iteration %d val accuracy %.2f' %
                       (iter_num, val_acc.avg * 100.0))

    # Here is our training loop.
    while iter_num < max_iter:
        for input, target in progress(train_loader):
            if iter_num % 1000 == 0:
                # Every 1000 turns chop down the negative params
                neg_means = []
                pos_means = []
                neg_count = 0
                param_count = 0
                with torch.no_grad():
                    for name, param in model.named_parameters():
                        if all(n in name
                               for n in ['layer4', 'conv', 'weight']):
                            pc = param.numel()
                            neg = (param < 0)
                            nc = neg.int().sum().item()
                            param_count += pc
                            neg_count += nc
                            if nc > 0:
                                neg_means.append(param[neg].mean().item())
                            if nc < pc:
                                pos_means.append(param[~neg].mean().item())
                            param[neg] *= 0.5
                    print_progress(
                        '%d/%d neg, mean %e vs %e pos' %
                        (neg_count, param_count, sum(neg_means) /
                         len(neg_means), sum(pos_means) / len(pos_means)))
            # Track the average training loss/accuracy for each epoch.
            train_loss, train_acc = AverageMeter(), AverageMeter()
            # Load data
            input_var, target_var = [d.cuda() for d in [input, target]]
            # Evaluate model
            output = model(input_var)
            loss = criterion(output, target_var)
            train_loss.update(loss.data.item(), input.size(0))
            # Perform one step of SGD
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # Also check training set accuracy
            _, pred = output.max(1)
            accuracy = (target_var.eq(pred)).data.float().sum().item() / (
                input.size(0))
            train_acc.update(accuracy)
            remaining = 1 - iter_num / float(max_iter)
            post_progress(l=train_loss.avg,
                          a=train_acc.avg,
                          v=best['val_accuracy'])
            # Advance
            iter_num += 1
            if iter_num >= max_iter:
                break
            # Linear learning rate decay
            lr = init_lr * remaining
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
            # Ocassionally check validation set accuracy and checkpoint
            if iter_num % 1000 == 0:
                validate_and_checkpoint()
                model.train()