def predict_corners(self, new_corners): ''' If in new_corners are Nones then this function tries to predict where not found corners are @param new_corners: ''' db.db_break() new_corners = self._improve_corners(new_corners) self.validate_corners(new_corners) corners = filter(lambda x: x is not None, new_corners) def cmp(x, y): if x.similarity > y.similarity: return 1 else: return - 1 corners = sorted(corners, cmp) self.avg_sim = reduce(lambda x, y: x + y.similarity, corners, 0) while len(corners) > 0: ncorners = list(new_corners) self.avg_sim /= len(corners) self._predict_corners(ncorners) if all(ncorners): if cv.CheckContourConvexity([x.p for x in ncorners]) == 1: le = len(ncorners) for i,c in enumerate(ncorners): n= (i+1)%le ncorners[n].prev = c.p c.next = ncorners[n].p for c in ncorners:c.measure() return ncorners last = corners[-1] new_corners[last.id] = None self.avg_sim = self.avg_sim * len(corners) - last.similarity corners.remove(last) return None
def is_square(contour): """ Squareness checker Square contours should: -have 4 vertices after approximation, -have relatively large area (to filter out noisy contours) -be convex. -have angles between sides close to 90deg (cos(ang) ~0 ) Note: absolute value of an area is used because area may be positive or negative - in accordance with the contour orientation """ area = math.fabs( cv.ContourArea(contour) ) isconvex = cv.CheckContourConvexity(contour) s = 0 if len(contour) == 4 and area > 1000: for i in range(1, 4): # find minimum angle between joint edges (maximum of cosine) pt1 = contour[i] pt2 = contour[i-1] pt0 = contour[i-2] t = math.fabs(angle(pt0, pt1, pt2)) if s <= t:s = t # if cosines of all angles are small (all angles are ~90 degree) # then its a square if s < 0.3:return True return False
def _check_rectangle(self, rect, scale_factor): ''' Checks if rectangle is a good square marker @param rect: ''' if cv.CheckContourConvexity(rect) != 1: return False, 'conv' area = abs(cv.ContourArea(rect)) if area < SQ_SIZE: return False, 'area %d' % area orientation, code = self._decode_rect(rect) if orientation == self.FAILED: return False, 'no_corner: ' + str(code) else: return True, (code, orientation)
def __init__(self, poly, depth): self.depth = depth self.points = [] self.angles = [.0] self.touching = [] self.children = [] self.parents = [] xavg = [] yavg = [] xmin = ymin = xmax = ymax = None for j in range(poly.total): ptr = cv.GetSeqElem(poly, j) #point = ctypes.cast(_ptr, cv.Point.CAST ) #x = point.contents.x; y = point.contents.y point = cv.Point(pointer=ptr, cast=True) x = point.x y = point.y p = Point(x, y) if self.points: a = math.degrees(self.points[-1].angle(p)) self.angles.append(a) self.points.append(p) xavg.append(x) yavg.append(y) if j == 0: xmin = xmax = x ymin = ymax = y else: if x < xmin: xmin = x if x > xmax: xmax = x if y < ymin: ymin = y if y > ymax: ymax = y self.avariance = .0 self.avariance_points = [.0, .0] if self.angles: print(self.angles) prev = self.angles[0] for a in self.angles[1:]: v = abs(prev - a) self.avariance_points.append(v) self.avariance += v prev = a #print 'variance', self.avariance #print 'variance-points', self.avariance_points #print 'len len', len(self.points), len(self.avariance_points) n = len(self.points) self.weight = (sum(xavg) / float(n), sum(yavg) / float(n)) self.width = xmax - xmin self.height = ymax - ymin self.center = (int(xmin + (self.width / 2)), int(ymin + (self.height / 2))) self.rectangle = ((xmin, ymin), (xmax, ymax)) self.dwidth = xmax - xmin self.dheight = ymax - ymin self.dcenter = (xmin + (self.dwidth / 2), ymin + (self.dheight / 2)) self.drectangle = ((xmin, ymin), (xmax, ymax)) self.defects = [] self.center_defects = None self.convex = cv.CheckContourConvexity(poly) if not self.convex: T = 80 dxavg = [] dyavg = [] hull = cv.ConvexHull2(poly, self.storage_hull, 1, 0) defects = cv.ConvexityDefects(poly, hull, self.storage_defects) n = defects.total for j in range(n): D = cv.ConvexityDefect(pointer=cv.GetSeqElem(defects, j), cast=True) s = D.start.contents e = D.end.contents d = D.depth_point.contents start = (s.x, s.y) end = (e.x, e.y) depth = (d.x, d.y) ## ignore large defects ## if abs(end[0] - depth[0]) > T or abs(end[1] - depth[1]) > T or abs( start[0] - end[0]) > T or abs(start[1] - end[1]) > T: continue dxavg.append(depth[0]) dyavg.append(depth[1]) self.defects.append((start, end, depth)) xmin = ymin = 999999 xmax = ymax = -1 if self.defects: n = len(self.defects) self.center_defects = (int(sum(dxavg) / float(n)), int(sum(dyavg) / float(n))) for j, f in enumerate(self.defects): s, e, d = f if s[0] < xmin: xmin = s[0] if e[0] < xmin: xmin = e[0] if s[0] > xmax: xmax = s[0] if e[0] > xmax: xmax = e[0] if s[1] < ymin: ymin = s[1] if e[1] < ymin: ymin = e[1] if s[1] > ymax: ymax = s[1] if e[1] > ymax: ymax = e[1] self.dwidth = xmax - xmin self.dheight = ymax - ymin self.dcenter = (xmin + (self.dwidth / 2), ymin + (self.dheight / 2)) self.drectangle = ((xmin, ymin), (xmax, ymax)) cv.ClearMemStorage(self.storage_hull) cv.ClearMemStorage(self.storage_defects)
def findSquares4(img, storage): N = 11 sz = (img.width & -2, img.height & -2) timg = cv.CloneImage(img) # make a copy of input image gray = cv.CreateImage(sz, 8, 1) pyr = cv.CreateImage((sz.width / 2, sz.height / 2), 8, 3) # create empty sequence that will contain points - # 4 points per square (the square's vertices) squares = cv.CreateSeq(0, sizeof_CvSeq, sizeof_CvPoint, storage) squares = CvSeq_CvPoint.cast(squares) # select the maximum ROI in the image # with the width and height divisible by 2 subimage = cv.GetSubRect(timg, cv.Rect(0, 0, sz.width, sz.height)) # down-scale and upscale the image to filter out the noise cv.PyrDown(subimage, pyr, 7) cv.PyrUp(pyr, subimage, 7) tgray = cv.CreateImage(sz, 8, 1) # find squares in every color plane of the image for c in range(3): # extract the c-th color plane channels = [None, None, None] channels[c] = tgray cv.Split(subimage, channels[0], channels[1], channels[2], None) for l in range(N): # hack: use Canny instead of zero threshold level. # Canny helps to catch squares with gradient shading if (l == 0): # apply Canny. Take the upper threshold from slider # and set the lower to 0 (which forces edges merging) cv.Canny(tgray, gray, 0, thresh, 5) # dilate canny output to remove potential # holes between edge segments cv.Dilate(gray, gray, None, 1) else: # apply threshold if l!=0: # tgray(x, y) = gray(x, y) < (l+1)*255/N ? 255 : 0 cv.Threshold(tgray, gray, (l + 1) * 255 / N, 255, cv.CV_THRESH_BINARY) # find contours and store them all as a list count, contours = cv.FindContours(gray, storage, sizeof_CvContour, cv.CV_RETR_LIST, cv.CV_CHAIN_APPROX_SIMPLE, (0, 0)) if not contours: continue # test each contour for contour in contours.hrange(): # approximate contour with accuracy proportional # to the contour perimeter result = cv.ApproxPoly(contour, sizeof_CvContour, storage, cv.CV_POLY_APPROX_DP, cv.ContourPerimeter(contours) * 0.02, 0) # square contours should have 4 vertices after approximation # relatively large area (to filter out noisy contours) # and be convex. # Note: absolute value of an area is used because # area may be positive or negative - in accordance with the # contour orientation if (result.total == 4 and abs(cv.ContourArea(result)) > 1000 and cv.CheckContourConvexity(result)): s = 0 for i in range(5): # find minimum angle between joint # edges (maximum of cosine) if (i >= 2): t = abs( angle(result[i], result[i - 2], result[i - 1])) if s < t: s = t # if cosines of all angles are small # (all angles are ~90 degree) then write quandrange # vertices to resultant sequence if (s < 0.3): for i in range(4): squares.append(result[i]) return squares