def getBarcode(showImage = False): camera_index = 0 capture = cv.CaptureFromCAM(camera_index) time.sleep(0.1) frame = cv.QueryFrame(capture) if(showImage == True): cv.imshow('Test image', frame) width = frame.width height = frame.height raw = frame.tostring() # wrap image data image = zbar.Image(width, height, 'Y800', raw) # create a reader scanner = zbar.ImageScanner() # configure the reader scanner.parse_config('enable') # scan the image for barcodes scanner.scan(image) # extract results for symbol in image: # do something useful with results print 'decoded', symbol.type, 'symbol', '"%s"' % symbol.data return image[0].data
def render_deepdreamvideo(): import cv print("CV is working") cap = cv.VideoCapture('SampleFile.mkv') while (cap.isOpened()): ret, frame = cap.read() gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) cv.imshow('frame', gray) if cv.waitKey(1) & 0xFF == ord('q'): break cap.release() cv.destroyAllWindows()
def main(argv): default_file = 'images/board.JPEG' filename = argv[0] if len(argv) > 0 else default_file # Loads an image src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_GRAYSCALE) # Check if image is loaded fine if src is None: print('Error opening image!') print('Usage: hough_lines.py [image_name -- default ' + default_file + '] \n') return -1 dst = cv.Canny(src, 50, 200, None, 3) # Copy edges to the images that will display the results in BGR cdst = cv.cvtColor(dst, cv.COLOR_GRAY2BGR) cdstP = np.copy(cdst) lines = cv.HoughLines(dst, 1, np.pi / 180, 150, None, 0, 0) if lines is not None: for i in range(0, len(lines)): rho = lines[i][0][0] theta = lines[i][0][1] a = math.cos(theta) b = math.sin(theta) x0 = a * rho y0 = b * rho pt1 = (int(x0 + 1000 * (-b)), int(y0 + 1000 * (a))) pt2 = (int(x0 - 1000 * (-b)), int(y0 - 1000 * (a))) cv.line(cdst, pt1, pt2, (0, 0, 255), 3, cv.LINE_AA) linesP = cv.HoughLinesP(dst, 1, np.pi / 180, 50, None, 50, 10) if linesP is not None: for i in range(0, len(linesP)): l = linesP[i][0] cv.line(cdstP, (l[0], l[1]), (l[2], l[3]), (0, 0, 255), 3, cv.LINE_AA) y = int(round(1536 / 3)) x = int(round(2048 / 3)) src = cv.resize(cdst, (x, y)) # Resize image cdst = cv.resize(cdst, (x, y)) # Resize image cdstP = cv.resize(cdstP, (x, y)) # Resize image cv.imshow("Source", src) cv.imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst) cv.imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP) cv.imwrite("./houghLines.png", cdstP) cv.waitKey() return 0
video = cv.VideoCapture(0) background=0 for i in range(30): ret,background=video.read() background=np.flip(background, axis=1m) while True: ret,img=video.read() img=np.flip(img, axis=1) hsv=cv.cvtColor(img, cv.COLOR_BGR2HSV) blur=cv.GaussianBlur(hsv, (35,35), 0) cv.imshow("Display", img) lower=np.array([0,120,70]) upper=np.array([10,255,255]) mask01=cv.inRange(hsv, lower, upper) cv.imshow("Background", background) cv.imshow("mask01", mask01) k=cv.waitKey(1) if k==ord('q'): break video.release() cv.destroyAllWindows()
import cv as cv import numpy as np img = np.zeros((512, 512, 3), np.uint8) # 填充像素 img.fill(64) text = "OpenCV for Python" cv.putText(img, text, (10,40),cv.FONT_HERSHEY_SIMPLEX,\ 1,(0,255,255),1,cv.LINE_AA) cv.putText(img, text, (10,80),cv.FONT_HERSHEY_PLAIN,\ 1,(0,255,255),2,cv.LINE_AA) cv.putText(img, text, (10,120),cv.FONT_HERSHEY_DUPLEX,\ 1,(0,255,255),1,cv.LINE_AA) cv.putText(img, text, (10,160),cv.FONT_HERSHEY_COMPLEX,\ 1,(0,255,255),2,cv.LINE_AA) cv.putText(img, text, (10,200),cv.FONT_HERSHEY_TRIPLEX,\ 1,(0,255,255),1,cv.LINE_AA) cv.putText(img, text, (10,240),cv.FONT_HERSHEY_COMPLEX_SMALL,\ 1,(0,255,255),2,cv.LINE_AA) cv.putText(img, text, (10,280),cv.FONT_HERSHEY_SCRIPT_SIMPLEX,\ 1,(0,255,255),1,cv.LINE_AA) cv.putText(img, text, (10,320),cv.FONT_HERSHEY_SCRIPT_COMPLEX,\ 1,(0,255,255),2,cv.LINE_AA) cv.imshow('imgae', img) cv.waitKey() cv.destroyAllWindows()
import cv as cv2 # Loading the cascades face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') # Defining a function that will do the detections def detect(gray, frame): faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) roi_gray = gray[y:y + h, x:x + w] roi_color = frame[y:y + h, x:x + w] eyes = eye_cascade.detectMultiScale(roi_gray, 1.1, 3) for (ex, ey, ew, eh) in eyes: cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2) return frame # Doing some Face Recognition with the webcam video_capture = cv2.VideoCapture(0) while True: _, frame = video_capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) canvas = detect(gray, frame) cv2.imshow('Video', canvas) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()
import cv as cv2 import numpy as np img = cv2.imread('opencv_logo.png', 0) img = cv2.medianBlur(img, 5) cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0) circles = np.uint16(np.around(circles)) for i in circles[0, :]: # draw the outer circle cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2) # draw the center of the circle cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 3) cv2.imshow('detected circles', cimg) cv2.waitKey(0) cv2.destroyAllWindows()
import cv, cv2 img = cv.imread("cones_plus_shadowed_barrel.jpg", cv2.CV_LOAD_IMAGE_COLOR) cv.namedWindow('Normal Image') cv.imshow('Normal Image', img) hsv_img = img cv.CvtColor(img,hsv_img,cv.CV_RGB2HSV) cv.namedWindow('HSV Image') cv.imshow('HSV Image', hsv_img) cv.waitKey(0) cv.destroyAllWindows()
import cv import time import numpy as np cv_car = cv.CascadeClassifier( r'C:\Users\DEBIPRASAD\Desktop\Projetc Work\ComputerVision-Projects-master\CarPedestrianDetection\cascades\haarcascade_car.xml' ) capture = cv.VideoCapture( r'C:\Users\DEBIPRASAD\Desktop\Projetc Work\ComputerVision-Projects-master\CarPedestrianDetection\files\cars.avi' ) while capture.isOpened(): response, frame = capture.read() if response: gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) cars = cv_car.detectMultiScale(gray, 1.2, 3) for (x, y, w, h) in cars: cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 0), 3) cv.imshow('cars', frame) if cv.waitkey(1) & 0xFF == ord('q'): break else: break capture.release() cv.destroyAllWindows()
import cv as cv2 import numpy as np img = cv2.imread('opencv_logo.png',0) img = cv2.medianBlur(img,5) cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR) circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,20, param1=50,param2=30,minRadius=0,maxRadius=0) circles = np.uint16(np.around(circles)) for i in circles[0,:]: # draw the outer circle cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2) # draw the center of the circle cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3) cv2.imshow('detected circles',cimg) cv2.waitKey(0) cv2.destroyAllWindows()
# capture frames from the camera for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image, then initialize the timestamp # and occupied/unoccupied text image = frame.array gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE ) # Draw a rectangle around the faces for (x, y, w, h) in faces: cv.rectangle( image, (x, y), (x+w, y+h), (0, 255, 0), 2) # show the frame cv.imshow("Frame", image) key = cv.waitKey(1) & 0xFF # clear the stream in preparation for the next frame rawCapture.truncate(0) # if the `q` key was pressed, break from the loop if key == ord("q"): break
a_separate_r_log_normalize = normalize(a_separate_r_log) # resize filters to show a_separate_c_log_f = cv.resize(a_separate_c_log_normalize, (512, 512)) a_separate_r_log_f = cv.resize(a_separate_r_log_normalize, (512, 512)) a_log = cv.resize(a_log_normalize, (512, 512)) b_log = cv.resize(b_log_normalize, (512, 512)) c_log = cv.resize(c_log_normalize, (512, 512)) # write filters cv.imwrite(out_path + 'a.jpg', a_log) cv.imwrite(out_path + 'b.jpg', b_log) cv.imwrite(out_path + 'c.jpg', c_log) cv.imwrite(out_path + 'a_separate_c.jpg', a_separate_c_log_f) cv.imwrite(out_path + 'a_separate_r.jpg', a_separate_r_log_f) ''' # read filters a_fft = cv.imread('a.jpg', 0) b_fft = cv.imread('b.jpg', 0) c_fft = cv.imread('c.jpg', 0) a_separate_c_fft = cv.imread('a_separate_c.jpg', 0) a_separate_r_fft = cv.imread('a_separate_r.jpg', 0) # show filters cv.imshow('a', a_fft) cv.imshow('b', b_fft) cv.imshow('c', c_fft) cv.imshow('a_separate_c',a_separate_c_fft) cv.imshow('a_separate_r',a_separate_r_fft) '''