コード例 #1
0
def update_mhi(img, dst, diff_threshold):
    global last
    global mhi
    global storage
    global mask
    global orient
    global segmask
    timestamp = time.clock() / CLOCKS_PER_SEC # get current time in seconds
    size = cv.GetSize(img) # get current frame size
    idx1 = last
    if not mhi or cv.GetSize(mhi) != size:
        for i in range(N):
            buf[i] = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
            cv.Zero(buf[i])
        mhi = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        cv.Zero(mhi) # clear MHI at the beginning
        orient = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        segmask = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        mask = cv.CreateImage(size,cv. IPL_DEPTH_8U, 1)

    cv.CvtColor(img, buf[last], cv.CV_BGR2GRAY) # convert frame to grayscale
    idx2 = (last + 1) % N # index of (last - (N-1))th frame
    last = idx2
    silh = buf[idx2]
    cv.AbsDiff(buf[idx1], buf[idx2], silh) # get difference between frames
    cv.Threshold(silh, silh, diff_threshold, 1, cv.CV_THRESH_BINARY) # and threshold it
    cv.UpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION) # update MHI
    cv.CvtScale(mhi, mask, 255./MHI_DURATION,
                (MHI_DURATION - timestamp)*255./MHI_DURATION)
    cv.Zero(dst)
    cv.Merge(mask, None, None, None, dst)
    cv.CalcMotionGradient(mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3)
    if not storage:
        storage = cv.CreateMemStorage(0)
    seq = cv.SegmentMotion(mhi, segmask, storage, timestamp, MAX_TIME_DELTA)
    for (area, value, comp_rect) in seq:
        if comp_rect[2] + comp_rect[3] > 100: # reject very small components
            color = cv.CV_RGB(255, 0,0)
            silh_roi = cv.GetSubRect(silh, comp_rect)
            mhi_roi = cv.GetSubRect(mhi, comp_rect)
            orient_roi = cv.GetSubRect(orient, comp_rect)
            mask_roi = cv.GetSubRect(mask, comp_rect)
            angle = 360 - cv.CalcGlobalOrientation(orient_roi, mask_roi, mhi_roi, timestamp, MHI_DURATION)

            count = cv.Norm(silh_roi, None, cv.CV_L1, None) # calculate number of points within silhouette ROI
            if count < (comp_rect[2] * comp_rect[3] * 0.05):
                continue

            magnitude = 30.
            center = ((comp_rect[0] + comp_rect[2] / 2), (comp_rect[1] + comp_rect[3] / 2))
            cv.Circle(dst, center, cv.Round(magnitude*1.2), color, 3, cv.CV_AA, 0)
            cv.Line(dst,
                    center,
                    (cv.Round(center[0] + magnitude * cos(angle * cv.CV_PI / 180)),
                     cv.Round(center[1] - magnitude * sin(angle * cv.CV_PI / 180))),
                    color,
                    3,
                    cv.CV_AA,
                    0)
コード例 #2
0
    def process_image(self, slider_pos):
        """
        This function finds contours, draws them and their approximation by ellipses.
        """
        stor = cv.CreateMemStorage()

        # Create the destination images
        image02 = cv.CloneImage(self.source_image)
        cv.Zero(image02)
        image04 = cv.CreateImage(cv.GetSize(self.source_image),
                                 cv.IPL_DEPTH_8U, 3)
        cv.Zero(image04)

        # Threshold the source image. This needful for cv.FindContours().
        cv.Threshold(self.source_image, image02, slider_pos, 255,
                     cv.CV_THRESH_BINARY)

        # Find all contours.
        cont = cv.FindContours(image02, stor, cv.CV_RETR_LIST,
                               cv.CV_CHAIN_APPROX_NONE, (0, 0))

        for c in contour_iterator(cont):
            # Number of points must be more than or equal to 6 for cv.FitEllipse2
            if len(c) >= 6:
                # Copy the contour into an array of (x,y)s
                PointArray2D32f = cv.CreateMat(1, len(c), cv.CV_32FC2)
                for (i, (x, y)) in enumerate(c):
                    PointArray2D32f[0, i] = (x, y)

                # Draw the current contour in gray
                gray = cv.CV_RGB(100, 100, 100)
                cv.DrawContours(image04, c, gray, gray, 0, 1, 8, (0, 0))

                # Fits ellipse to current contour.
                (center, size, angle) = cv.FitEllipse2(PointArray2D32f)

                # Convert ellipse data from float to integer representation.
                center = (cv.Round(center[0]), cv.Round(center[1]))
                size = (cv.Round(size[0] * 0.5), cv.Round(size[1] * 0.5))

                # Draw ellipse in random color
                color = cv.CV_RGB(random.randrange(256), random.randrange(256),
                                  random.randrange(256))
                cv.Ellipse(image04, center, size, angle, 0, 360, color, 2,
                           cv.CV_AA, 0)

        # Show image. HighGUI use.
        cv.ShowImage("Result", image04)
コード例 #3
0
ファイル: ImageMixer.py プロジェクト: perchrn/TaktPlayer
 def _mixImageAlphaMask(self, wipeSettings, level, image1, image2, image2mask, mixMat):
     if(level < 0.99):
         wipeMode, wipePostMix, wipeConfig = wipeSettings
         if((wipeMode == WipeMode.Fade) or (wipeMode == WipeMode.Default)):
             valueCalc = int(256 * (1.0 - level))
             rgbColor = cv.CV_RGB(valueCalc, valueCalc, valueCalc)
             whiteColor = cv.CV_RGB(255, 255, 255)
             cv.Set(mixMat, whiteColor)
             cv.Set(mixMat, rgbColor, image2mask)
             cv.Mul(image1, mixMat, image1, 0.004)
             valueCalc = int(256 * level)
             rgbColor = cv.CV_RGB(valueCalc, valueCalc, valueCalc)
             cv.Zero(mixMat)
             cv.Set(mixMat, rgbColor, image2mask)
             cv.Mul(image2, mixMat, image2, 0.004)
             cv.Add(image1, image2, image1)
             return image1
         else:
             if(wipePostMix == False):
                 image2, image2mask = self._wipeImage(wipeMode, wipeConfig, level, image2, image2mask, mixMat, False)
                 cv.Copy(image2, image1, image2mask)
                 return image1
             else:
                 cv.Copy(image1, mixMat)
                 cv.Copy(image2, mixMat, image2mask)
                 return self._wipeMix(wipeMode, wipeConfig, level, image1, mixMat, image2)
     cv.Copy(image2, image1, image2mask)
     return image1
コード例 #4
0
 def rectif(self, image, cadreIn, cadreOut):
     prev_image = cv.CloneImage(image)
     cv.Zero(image)
     mmat = cv.CreateMat(3, 3, cv.CV_32FC1)
     print("mmat= %s" % repr(mmat))
     cv.GetPerspectiveTransform(cadreIn, cadreOut, mmat)
     cv.WarpPerspective(prev_image, image,
                        mmat)  #, flags=cv.CV_WARP_INVERSE_MAP )
コード例 #5
0
ファイル: liner.py プロジェクト: jgrip/xystitch
 def draw_color_contours(self, color_contours, color=None):
     '''Takes in list of (contour, color) tuples where contour is iterable for (x, y) tuples'''
     gray_img = cv.CreateImage(cv.GetSize(self.image), 8, 1)
     #cv.CvtColor( self.image, gray_img, cv.CV_BGR2GRAY )
     cv.Zero(gray_img)
     for (contour, color) in color_contours:
         cv.PolyLine(gray_img, [contour], True, color)
     cv.ShowImage("Contours", gray_img)
     cv.WaitKey()
コード例 #6
0
ファイル: liner.py プロジェクト: jgrip/xystitch
 def get_working(self):
     (width, height) = cv.GetSize(self.image)
     dest = cv.CreateMat(height, width, cv.CV_8UC3)
     mask8x1 = cv.CreateImage(cv.GetSize(self.image), 8, 1)
     cv.Zero(mask8x1)
     cv.FillConvexPoly(mask8x1, self.cur_contour, cv.ScalarAll(255))
     # Could 8x3 mask copy but histogram mask will take care of it
     cv.Copy(self.image, dest)
     return (dest, mask8x1)
コード例 #7
0
def gen_mask(frec, tpoly):

    mask = cv.CreateMat(int(np.round(frec.height())),
                        int(np.round(frec.width())), cv.CV_8UC1)
    cv.Zero(mask)
    pts = tuple((int(np.round(x - frec.left)), int(np.round(y - frec.top)))
                for (x, y) in tpoly.contour(0))
    cv.FillPoly(mask, [pts], cv.Scalar(1), lineType=8, shift=0)

    return np.asarray(mask)
コード例 #8
0
def minarea_seq(img, count, storage):
    points = [(randint(img.width / 4, img.width * 3 / 4),
               randint(img.height / 4, img.height * 3 / 4))
              for i in range(count)]
    cv.Zero(img)

    for p in points:
        cv.Circle(img, roundxy(p), 2, cv.CV_RGB(255, 0, 0), cv.CV_FILLED,
                  cv.CV_AA, 0)

    draw_common(points)
コード例 #9
0
 def test_2686307(self):
     lena = cv.LoadImage(find_sample("lena.jpg"), 1)
     dst = cv.CreateImage((512,512), 8, 3)
     cv.Set(dst, (128,192,255))
     mask = cv.CreateImage((512,512), 8, 1)
     cv.Zero(mask)
     cv.Rectangle(mask, (10,10), (300,100), 255, -1)
     cv.Copy(lena, dst, mask)
     self.snapL([lena, dst, mask])
     m = cv.CreateMat(480, 640, cv.CV_8UC1)
     print "ji", m
     print m.rows, m.cols, m.type, m.step
コード例 #10
0
ファイル: liner.py プロジェクト: jgrip/xystitch
    def compute_ref(self):
        '''Compute a reference histogram that matched regions should approximate'''
        (image, polygon) = self.get_ref()

        (width, height) = cv.GetSize(image)
        # (rows, cols,...)
        dest = cv.CreateMat(height, width, cv.CV_8UC3)
        mask8x1 = cv.CreateImage(cv.GetSize(image), 8, 1)
        cv.Zero(mask8x1)
        cv.FillConvexPoly(mask8x1, polygon, cv.ScalarAll(255))
        cv.Copy(image, dest)

        self.ref_hist = hs_histogram(dest, mask8x1)
コード例 #11
0
def minarea_array(img, count):
    pointMat = cv.CreateMat(count, 1, cv.CV_32SC2)
    for i in range(count):
        pointMat[i, 0] = (randint(img.width / 4, img.width * 3 / 4),
                          randint(img.height / 4, img.height * 3 / 4))

    cv.Zero(img)

    for i in range(count):
        cv.Circle(img, roundxy(pointMat[i, 0]), 2, cv.CV_RGB(255, 0, 0),
                  cv.CV_FILLED, cv.CV_AA, 0)

    draw_common(pointMat)
コード例 #12
0
ファイル: calibrate.py プロジェクト: zittix/AcousticRobot
    def undistort(self, img):
        # intrinsic parameters
        fx = self.C[0, 0]
        fy = self.C[1, 1]
        cx = self.C[0, 2]
        cy = self.C[1, 2]
        # radial distortion coefficients
        k1, k2 = self.dist[0:2]
        # †angential distortion coefficients
        p1, p2 = self.dist[2:4]
        intrinsics = cv.CreateMat(3, 3, cv.CV_64FC1)
        cv.Zero(intrinsics)
        intrinsics[0, 0] = float(fx)
        intrinsics[1, 1] = float(fy)
        intrinsics[2, 2] = 1.0
        intrinsics[0, 2] = float(cx)
        intrinsics[1, 2] = float(cy)

        dist_coeffs = cv.CreateMat(1, 4, cv.CV_64FC1)
        cv.Zero(dist_coeffs)
        dist_coeffs[0, 0] = float(k1)
        dist_coeffs[0, 1] = float(k2)
        dist_coeffs[0, 2] = float(p1)
        dist_coeffs[0, 3] = float(p2)

        #src = cv.LoadImage(src)
        src = cv.fromarray(img)
        dst = img.copy()
        dst = cv.fromarray(dst)
        #dst = cv.CreateImage(cv.GetSize(src), src.type, src.channels)
        mapx = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
        mapy = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
        cv.InitUndistortMap(intrinsics, dist_coeffs, mapx, mapy)
        cv.Remap(src, dst, mapx,
                 mapy, cv.CV_INTER_LINEAR + cv.CV_WARP_FILL_OUTLIERS,
                 cv.ScalarAll(0))
        # cv.Undistort2(src,dst, intrinsics, dist_coeffs)
        return np.array(dst)
コード例 #13
0
ファイル: liner.py プロジェクト: jgrip/xystitch
 def draw_contour(self, contour, color=None):
     gray_img = cv.CreateImage(cv.GetSize(self.image), 8, 1)
     #cv.CvtColor( self.image, gray_img, cv.CV_BGR2GRAY )
     cv.Zero(gray_img)
     # DrawContours(img, contour, external_color, hole_color, max_level [, thickness [, lineType [, offset]]]) -> None
     # in my small example external didn't get value but internal did
     #  void cvPolyLine(CvArr* img,
     #        CvPoint** pts, int* npts,
     #        int contours, int is_closed, CvScalar color,
     #        int thickness=1, int lineType=8, int shift=0)
     if color is None:
         # White for default black background
         #color = cv.CV_RGB(255, 255, 255)
         color = cv.ScalarAll(255)
     cv.PolyLine(gray_img, [contour], True, color)
     cv.ShowImage("Contours", gray_img)
     cv.WaitKey()
コード例 #14
0
def Process(image, pos_var, pos_w, pos_phase, pos_psi):
    global kernel_size
    if kernel_size % 2 == 0:
        kernel_size += 1

    kernel = cv.CreateMat(kernel_size, kernel_size, cv.CV_32FC1)
    # kernelimg = cv.CreateImage((kernel_size,kernel_size),cv.IPL_DEPTH_32F,1)
    # big_kernelimg = cv.CreateImage((kernel_size*20,kernel_size*20),cv.IPL_DEPTH_32F,1)
    src = cv.CreateImage((image.width, image.height), cv.IPL_DEPTH_8U, 1)
    src_f = cv.CreateImage((image.width, image.height), cv.IPL_DEPTH_32F, 1)

    # src = image #cv.CvtColor(image,src,cv.CV_BGR2GRAY) #no conversion is needed
    if cv.GetElemType(image) == cv.CV_8UC3:
        cv.CvtColor(image, src, cv.CV_BGR2GRAY)
    else:
        src = image

    cv.ConvertScale(src, src_f, 1.0 / 255, 0)
    dest = cv.CloneImage(src_f)
    dest_mag = cv.CloneImage(src_f)

    var = pos_var / 10.0
    w = pos_w / 10.0
    phase = pos_phase * cv.CV_PI / 180.0
    psi = cv.CV_PI * pos_psi / 180.0

    cv.Zero(kernel)
    for x in range(-kernel_size / 2 + 1, kernel_size / 2 + 1):
        for y in range(-kernel_size / 2 + 1, kernel_size / 2 + 1):
            kernel_val = math.exp(-(
                (x * x) +
                (y * y)) / (2 * var)) * math.cos(w * x * math.cos(phase) +
                                                 w * y * math.sin(phase) + psi)
            cv.Set2D(kernel, y + kernel_size / 2, x + kernel_size / 2,
                     cv.Scalar(kernel_val))
            # cv.Set2D(kernelimg,y+kernel_size/2,x+kernel_size/2,cv.Scalar(kernel_val/2+0.5))
    cv.Filter2D(src_f, dest, kernel, (-1, -1))
    # cv.Resize(kernelimg,big_kernelimg)
    cv.Pow(dest, dest_mag, 2)

    # return (dest_mag, big_kernelimg, dest)
    return (dest_mag, dest)
    # cv.ShowImage("Mag",dest_mag)
    # cv.ShowImage("Kernel",big_kernelimg)
    # cv.ShowImage("Process window",dest)
コード例 #15
0
def findImage(img):
    #Set up storage for images
    frame_size = cv.GetSize(img)
    img2 = cv.CreateImage(frame_size,8,3)
    tmp = cv.CreateImage(frame_size,8,cv.CV_8U)
    h = cv.CreateImage(frame_size,8,1)

    #copy original image to do work on
    cv.Copy(img,img2)

    #altering the image a bit for smoother processing
    cv.Smooth(img2,img2,cv.CV_BLUR,3)
    cv.CvtColor(img2,img2,cv.CV_BGR2HSV)

    #make sure temp is empty
    cv.Zero(tmp)

    #detection based on HSV value
    #30,100,90 lower limit on pic 41,255,255 on pic
    #cv.InRangeS(img2,cv.Scalar(25,100,87),cv.Scalar(50,255,255),tmp)
    #Range for green plate dot in my Living room
    #cv.InRangeS(img2,cv.Scalar(55,80,60),cv.Scalar(65,95,90),tmp)
    #classroom
    #cv.InRangeS(img2,cv.Scalar(55,80,60),cv.Scalar(70,110,70),tmp)
    #Kutztowns Gym
    cv.InRangeS(img2,cv.Scalar(65,100,112),cv.Scalar(85,107,143),tmp)

    elmt_shape=cv.CV_SHAPE_ELLIPSE
    pos = 3
    element = cv.CreateStructuringElementEx(pos*2+1, pos*2+1, pos, pos, elmt_shape)
    cv.Dilate(tmp,tmp,element,6)
    cv.Erode(tmp,tmp,element,2)

    cv.Split(tmp,h,None,None,None)
    storage = cv.CreateMemStorage()

    scan = sc.FindContours(h,storage)
    xyImage=drawCircles(scan,img)

    if xyImage != None:
            return (xyImage,tmp)
    else:
            return None
コード例 #16
0
def crack(tocrack,withContourImage=False):
    #Function that intent to release all characters on the image so that the ocr can detect them
    
    #We just apply 4 filters but with multiples rounds
    resized = resizeImage(tocrack, (tocrack.width*6, tocrack.height*6))
    dilateImage(resized, 4)
    erodeImage(resized, 4)
    thresholdImage(resized, 200, cv.CV_THRESH_BINARY)
    
    if withContourImage: #If we want the image made only with contours
        contours = getContours(resized, 5)
        contourimage = cv.CreateImage(cv.GetSize(resized), 8, 3)
        cv.Zero(contourimage)
        cv.DrawContours(contourimage, contours, cv.Scalar(255), cv.Scalar(255), 2, cv.CV_FILLED)    
        
        contourimage = resizeImage(contourimage, cv.GetSize(tocrack))
        resized = resizeImage(resized, cv.GetSize(tocrack))
        return resized, contourimage
    
    resized = resizeImage(resized, cv.GetSize(tocrack))
    return resized
コード例 #17
0
    def test_2542670(self):
        xys = [(94, 121), (94, 122), (93, 123), (92, 123), (91, 124), (91, 125), (91, 126), (92, 127), (92, 128), (92, 129), (92, 130), (92, 131), (91, 132), (90, 131), (90, 130), (90, 131), (91, 132), (92, 133), (92, 134), (93, 135), (94, 136), (94, 137), (94, 138), (95, 139), (96, 140), (96, 141), (96, 142), (96, 143), (97, 144), (97, 145), (98, 146), (99, 146), (100, 146), (101, 146), (102, 146), (103, 146), (104, 146), (105, 146), (106, 146), (107, 146), (108, 146), (109, 146), (110, 146), (111, 146), (112, 146), (113, 146), (114, 146), (115, 146), (116, 146), (117, 146), (118, 146), (119, 146), (120, 146), (121, 146), (122, 146), (123, 146), (124, 146), (125, 146), (126, 146), (126, 145), (126, 144), (126, 143), (126, 142), (126, 141), (126, 140), (127, 139), (127, 138), (127, 137), (127, 136), (127, 135), (127, 134), (127, 133), (128, 132), (129, 132), (130, 131), (131, 130), (131, 129), (131, 128), (132, 127), (133, 126), (134, 125), (134, 124), (135, 123), (136, 122), (136, 121), (135, 121), (134, 121), (133, 121), (132, 121), (131, 121), (130, 121), (129, 121), (128, 121), (127, 121), (126, 121), (125, 121), (124, 121), (123, 121), (122, 121), (121, 121), (120, 121), (119, 121), (118, 121), (117, 121), (116, 121), (115, 121), (114, 121), (113, 121), (112, 121), (111, 121), (110, 121), (109, 121), (108, 121), (107, 121), (106, 121), (105, 121), (104, 121), (103, 121), (102, 121), (101, 121), (100, 121), (99, 121), (98, 121), (97, 121), (96, 121), (95, 121)]

        #xys = xys[:12] + xys[16:]
        pts = cv.CreateMat(len(xys), 1, cv.CV_32SC2)
        for i,(x,y) in enumerate(xys):
            pts[i,0] = (x, y)
        storage = cv.CreateMemStorage()
        hull = cv.ConvexHull2(pts, storage)
        hullp = cv.ConvexHull2(pts, storage, return_points = 1)
        defects = cv.ConvexityDefects(pts, hull, storage)

        vis = cv.CreateImage((1000,1000), 8, 3)
        x0 = min([x for (x,y) in xys]) - 10
        x1 = max([x for (x,y) in xys]) + 10
        y0 = min([y for (y,y) in xys]) - 10
        y1 = max([y for (y,y) in xys]) + 10
        def xform(pt):
            x,y = pt
            return (1000 * (x - x0) / (x1 - x0),
                    1000 * (y - y0) / (y1 - y0))

        for d in defects[:2]:
            cv.Zero(vis)

            # First draw the defect as a red triangle
            cv.FillConvexPoly(vis, [xform(p) for p in d[:3]], cv.RGB(255,0,0))

            # Draw the convex hull as a thick green line
            for a,b in zip(hullp, hullp[1:]):
                cv.Line(vis, xform(a), xform(b), cv.RGB(0,128,0), 3)

            # Draw the original contour as a white line
            for a,b in zip(xys, xys[1:]):
                cv.Line(vis, xform(a), xform(b), (255,255,255))

            self.snap(vis)
コード例 #18
0
        c = cv.WaitKey(0) % 0x100
        if c == 27:
            print("Exiting ...")
            sys.exit(0)
        elif c == ord('c'):
            if (is_color):

                print("Grayscale mode is set")
                cv.CvtColor(color_img, gray_img, cv.CV_BGR2GRAY)
                is_color = 0

            else:

                print("Color mode is set")
                cv.Copy(im, color_img, None)
                cv.Zero(mask)
                is_color = 1

        elif c == ord('m'):
            if (is_mask):
                cv.DestroyWindow("mask")
                is_mask = 0

            else:
                cv.NamedWindow("mask", 0)
                cv.Zero(mask)
                cv.ShowImage("mask", mask)
                is_mask = 1

        elif c == ord('r'):
            print("Original image is restored")
コード例 #19
0
    def process_image(self, slider_pos):
        global cimg, source_image1, ellipse_size, maxf, maxs, eoc, lastcx, lastcy, lastr
        """
        This function finds contours, draws them and their approximation by ellipses.
        """
        stor = cv.CreateMemStorage()

        # Create the destination images
        cimg = cv.CloneImage(self.source_image)
        cv.Zero(cimg)
        image02 = cv.CloneImage(self.source_image)
        cv.Zero(image02)
        image04 = cv.CreateImage(cv.GetSize(self.source_image),
                                 cv.IPL_DEPTH_8U, 3)
        cv.Zero(image04)

        # Threshold the source image. This needful for cv.FindContours().
        cv.Threshold(self.source_image, image02, slider_pos, 255,
                     cv.CV_THRESH_BINARY)

        # Find all contours.
        cont = cv.FindContours(image02, stor, cv.CV_RETR_LIST,
                               cv.CV_CHAIN_APPROX_NONE, (0, 0))

        maxf = 0
        maxs = 0
        size1 = 0

        for c in contour_iterator(cont):
            if len(c) > ellipse_size:
                PointArray2D32f = cv.CreateMat(1, len(c), cv.CV_32FC2)
                for (i, (x, y)) in enumerate(c):
                    PointArray2D32f[0, i] = (x, y)

                # Draw the current contour in gray
                gray = cv.CV_RGB(100, 100, 100)
                cv.DrawContours(image04, c, gray, gray, 0, 1, 8, (0, 0))

                if iter == 0:
                    strng = segF + '/' + 'contour1.png'
                    cv.SaveImage(strng, image04)
                color = (255, 255, 255)

                (center, size, angle) = cv.FitEllipse2(PointArray2D32f)

                # Convert ellipse data from float to integer representation.
                center = (cv.Round(center[0]), cv.Round(center[1]))
                size = (cv.Round(size[0] * 0.5), cv.Round(size[1] * 0.5))

                if iter == 1:
                    if size[0] > size[1]:
                        size2 = size[0]
                    else:
                        size2 = size[1]

                    if size2 > size1:
                        size1 = size2
                        size3 = size

                # Fits ellipse to current contour.
                if eoc == 0 and iter == 2:
                    rand_val = abs((lastr - ((size[0] + size[1]) / 2)))
                    if rand_val > 20 and float(max(size[0], size[1])) / float(
                            min(size[0], size[1])) < 1.5:
                        lastcx = center[0]
                        lastcy = center[1]
                        lastr = (size[0] + size[1]) / 2

                    if rand_val > 20 and float(max(size[0], size[1])) / float(
                            min(size[0], size[1])) < 1.4:
                        cv.Ellipse(cimg, center, size, angle, 0, 360, color, 2,
                                   cv.CV_AA, 0)
                        cv.Ellipse(source_image1, center, size, angle, 0, 360,
                                   color, 2, cv.CV_AA, 0)

                elif eoc == 1 and iter == 2:
                    (int, cntr, rad) = cv.MinEnclosingCircle(PointArray2D32f)
                    cntr = (cv.Round(cntr[0]), cv.Round(cntr[1]))
                    rad = (cv.Round(rad))
                    if maxf == 0 and maxs == 0:
                        cv.Circle(cimg, cntr, rad, color, 1, cv.CV_AA, shift=0)
                        cv.Circle(source_image1,
                                  cntr,
                                  rad,
                                  color,
                                  2,
                                  cv.CV_AA,
                                  shift=0)
                        maxf = rad
                    elif (maxf > 0 and maxs == 0) and abs(rad - maxf) > 30:
                        cv.Circle(cimg, cntr, rad, color, 2, cv.CV_AA, shift=0)
                        cv.Circle(source_image1,
                                  cntr,
                                  rad,
                                  color,
                                  2,
                                  cv.CV_AA,
                                  shift=0)
                        maxs = len(c)
        if iter == 1:
            temp3 = 2 * abs(size3[1] - size3[0])
            if (temp3 > 40):
                eoc = 1
コード例 #20
0
import cv2.cv as cv
from math import cos, sin, sqrt
import sys

if __name__ == "__main__":
    A = [[1, 1], [0, 1]]

    img = cv.CreateImage((500, 500), 8, 3)
    kalman = cv.CreateKalman(2, 1, 0)
    state = cv.CreateMat(2, 1, cv.CV_32FC1)  # (phi, delta_phi)
    process_noise = cv.CreateMat(2, 1, cv.CV_32FC1)
    measurement = cv.CreateMat(1, 1, cv.CV_32FC1)
    rng = cv.RNG(-1)
    code = -1L

    cv.Zero(measurement)
    cv.NamedWindow("Kalman", 1)

    while True:
        cv.RandArr(rng, state, cv.CV_RAND_NORMAL, cv.RealScalar(0),
                   cv.RealScalar(0.1))

        kalman.transition_matrix[0, 0] = 1
        kalman.transition_matrix[0, 1] = 1
        kalman.transition_matrix[1, 0] = 0
        kalman.transition_matrix[1, 1] = 1

        cv.SetIdentity(kalman.measurement_matrix, cv.RealScalar(1))
        cv.SetIdentity(kalman.process_noise_cov, cv.RealScalar(1e-5))
        cv.SetIdentity(kalman.measurement_noise_cov, cv.RealScalar(1e-1))
        cv.SetIdentity(kalman.error_cov_post, cv.RealScalar(1))
コード例 #21
0
ファイル: inpaint.py プロジェクト: r4mp/cinelerra
        img0 = cv.DecodeImage(imagefiledata, cv.CV_LOAD_IMAGE_COLOR)

    print "Hot keys:"
    print "\tESC - quit the program"
    print "\tr - restore the original image"
    print "\ti or ENTER - run inpainting algorithm"
    print "\t\t(before running it, paint something on the image)"

    cv.NamedWindow("image", 1)
    cv.NamedWindow("inpainted image", 1)

    img = cv.CloneImage(img0)
    inpainted = cv.CloneImage(img0)
    inpaint_mask = cv.CreateImage(cv.GetSize(img), 8, 1)

    cv.Zero(inpaint_mask)
    cv.Zero(inpainted)
    cv.ShowImage("image", img)
    cv.ShowImage("inpainted image", inpainted)

    sk = Sketcher("image", [img, inpaint_mask])
    while True:
        c = cv.WaitKey(0) % 0x100

        if c == 27 or c == ord('q'):
            break

        if c == ord('r'):
            cv.Zero(inpaint_mask)
            cv.Copy(img0, img)
            cv.ShowImage("image", img)
コード例 #22
0
#
# Works with OpenCV 2.3.1

cv.NamedWindow("imgOriginal", 1)

cv.NamedWindow("imgMarkers", 1)

cv.NamedWindow("imgWatershed", 1)

imgOriginal = cv.LoadImage("TouchingCircles.png")

imgMarkers = cv.CreateImage(cv.GetSize(imgOriginal), cv.IPL_DEPTH_8U, 1)

imgWatershed = cv.CreateImage(cv.GetSize(imgOriginal), cv.IPL_DEPTH_32S, 1)

cv.Zero(imgMarkers)

cv.Zero(imgWatershed)

# create markers for the background, upper circle, and lower circle
# markers are differentiated by colour

# background marker, identified by colour (80, 80, 80)
cv.Circle(imgMarkers, (60, 60), 3, (80, 80, 80), -1)

# upper circle marker, identified by colour (160, 160, 160)
cv.Circle(imgMarkers, (180, 180), 3, (160, 160, 160), -1)

# lower circle marker, identified by colour (240, 240, 240)
cv.Circle(imgMarkers, (320, 320), 3, (240, 240, 240), -1)
コード例 #23
0
    print "\tw - run watershed algorithm"
    print "\t  (before that, roughly outline several markers on the image)"

    cv.NamedWindow("image", 1)
    cv.NamedWindow("watershed transform", 1)

    img = cv.CloneImage(img0)
    img_gray = cv.CloneImage(img0)
    wshed = cv.CloneImage(img0)
    marker_mask = cv.CreateImage(cv.GetSize(img), 8, 1)
    markers = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_32S, 1)

    cv.CvtColor(img, marker_mask, cv.CV_BGR2GRAY)
    cv.CvtColor(marker_mask, img_gray, cv.CV_GRAY2BGR)

    cv.Zero(marker_mask)
    cv.Zero(wshed)

    cv.ShowImage("image", img)
    cv.ShowImage("watershed transform", wshed)

    sk = Sketcher("image", [img, marker_mask])

    while True:
        c = cv.WaitKey(0) % 0x100
        if c == 27 or c == ord('q'):
            break
        if c == ord('r'):
            cv.Zero(marker_mask)
            cv.Copy(img0, img)
            cv.ShowImage("image", img)
コード例 #24
0
    orig = cv.LoadImage("robin2.png")

    #Convert in black and white
    res = cv.CreateImage(cv.GetSize(orig), 8, 1)
    cv.CvtColor(orig, res, cv.CV_BGR2GRAY)

    #Operations on the image
    openCloseImage(res)
    dilateImage(res, 2)
    erodeImage(res, 2)
    smoothImage(res, 5)

    thresholdImage(res, 150, cv.CV_THRESH_BINARY_INV)

    #Get contours approximated
    contourLow = getContours(res, 3)

    #Draw them on an empty image
    final = cv.CreateImage(cv.GetSize(res), 8, 1)
    cv.Zero(final)
    cv.DrawContours(final, contourLow, cv.Scalar(255), cv.Scalar(255), 2,
                    cv.CV_FILLED)

    cv.ShowImage("orig", orig)
    cv.ShowImage("image", res)
    cv.SaveImage("modified.png", res)
    cv.ShowImage("contour", final)
    cv.SaveImage("contour.png", final)

    cv.WaitKey(0)
コード例 #25
0
if __name__ == "__main__":
    motion = 0
    capture = 0

    if len(sys.argv)==1:
        capture = cv.CreateCameraCapture(0)
    elif len(sys.argv)==2 and sys.argv[1].isdigit():
        capture = cv.CreateCameraCapture(int(sys.argv[1]))
    elif len(sys.argv)==2:
        capture = cv.CreateFileCapture(sys.argv[1])

    if not capture:
        print "Could not initialize capturing..."
        sys.exit(-1)

    cv.NamedWindow("Motion", 1)
    while True:
        image = cv.QueryFrame(capture)
        if(image):
            if(not motion):
                    motion = cv.CreateImage((image.width, image.height), 8, 3)
                    cv.Zero(motion)
                    #motion.origin = image.origin
            update_mhi(image, motion, 30)
            cv.ShowImage("Motion", motion)
            if(cv.WaitKey(10) != -1):
                break
        else:
            break
    cv.DestroyWindow("Motion")
コード例 #26
0
ファイル: ImageMixer.py プロジェクト: perchrn/TaktPlayer
    def _wipeImage(self, wipeMode, wipeConfig, level, image, imageMask, mixMat, whiteMode = False):
        if((wipeMode == WipeMode.Push)):
            wipeDirection = wipeConfig
            if(whiteMode == True):
                cv.Set(mixMat, (255,255,255))
            else:
                cv.SetZero(mixMat)
            if(wipeDirection < 0.25):
                wipePosX = int(self._internalResolutionX * level)
                sourceLeft = self._internalResolutionX-wipePosX
                sourceTop = 0
                sourceWidth = wipePosX
                sourceHeight = self._internalResolutionY
                destLeft = 0
                destTop = 0
            elif(wipeDirection < 0.5):
                wipePosX = self._internalResolutionX - int(self._internalResolutionX * level)
                sourceLeft = 0
                sourceTop = 0
                sourceWidth = self._internalResolutionX-wipePosX
                sourceHeight = self._internalResolutionY
                destLeft = self._internalResolutionX-(self._internalResolutionX-wipePosX)
                destTop = 0
            elif(wipeDirection < 0.75):
                wipePosY = int(self._internalResolutionY * level)
                sourceLeft = 0
                sourceTop = self._internalResolutionY-wipePosY
                sourceWidth = self._internalResolutionX
                sourceHeight = wipePosY
                destLeft = 0
                destTop = 0
            else:
                wipePosY = self._internalResolutionY - int(self._internalResolutionY * level)
                sourceLeft = 0
                sourceTop = 0
                sourceWidth = self._internalResolutionX
                sourceHeight = self._internalResolutionY-wipePosY
                destLeft = 0
                destTop = self._internalResolutionY-(self._internalResolutionY-wipePosY)
            destWidth = sourceWidth
            destHeight = sourceHeight
            src_region = cv.GetSubRect(image, (sourceLeft, sourceTop, sourceWidth, sourceHeight))
            dst_region = cv.GetSubRect(mixMat, (destLeft, destTop, destWidth, destHeight))
            cv.Copy(src_region, dst_region)
            cv.Zero(self._mixMixMask1)
            dst_region = cv.GetSubRect(self._mixMixMask1, (destLeft, destTop, destWidth, destHeight))
            cv.Set(dst_region, 255)
            return mixMat, self._mixMixMask1
        if(wipeMode == WipeMode.Noize):
            scaleArg = wipeConfig
            cv.Copy(image, mixMat)
            noizeMask = getNoizeMask(level, self._internalResolutionX, self._internalResolutionY, 1.0 + (19.0 * scaleArg))
            if(whiteMode == True):
                cv.Set(image, (255,255,255))
            else:
                cv.Set(image, (0,0,0))
            cv.Copy(mixMat, image, noizeMask)
            return image, noizeMask
        if(wipeMode == WipeMode.Zoom):
            xMove, yMove = wipeConfig
            xSize = int(self._internalResolutionX * level)
            ySize = int(self._internalResolutionY * level)
            xPos = int((self._internalResolutionX - xSize) * xMove)
            yPos = int((self._internalResolutionY - ySize) * (1.0 - yMove))
            if(whiteMode == True):
                cv.Set(mixMat, (255,255,255))
            else:
                cv.SetZero(mixMat)
            dst_region = cv.GetSubRect(mixMat, (xPos, yPos, xSize, ySize))
            cv.Resize(image, dst_region,cv.CV_INTER_CUBIC)
            cv.Copy(mixMat, image)
            cv.SetZero(self._mixMixMask1)
            if(imageMask == None):
                dst_region = cv.GetSubRect(self._mixMixMask1, (xPos, yPos, xSize, ySize))
                cv.Set(dst_region, 255)
            else:
                dst_region = cv.GetSubRect(self._mixMixMask1, (xPos, yPos, xSize, ySize))
                cv.Resize(imageMask, dst_region,cv.CV_INTER_CUBIC)
            return image, self._mixMixMask1
        if(wipeMode == WipeMode.Flip):
            flipRotation = wipeConfig
            rotation = 1.0 - level
            srcPoints = ((0.0, 0.0),(0.0,self._internalResolutionY),(self._internalResolutionX, 0.0))
            destPoint1 = (0.0, 0.0)
            destPoint2 = (0.0, self._internalResolutionY)
            destPoint3 = (self._internalResolutionX, 0.0)
            flipAngle = rotation / 4
            destPoint1 = rotatePoint(flipRotation, destPoint1[0], destPoint1[1], self._halfResolutionX, self._halfResolutionY, flipAngle)
            destPoint2 = rotatePoint(flipRotation, destPoint2[0], destPoint2[1], self._halfResolutionX, self._halfResolutionY, flipAngle)
            destPoint3 = rotatePoint(flipRotation, destPoint3[0], destPoint3[1], self._halfResolutionX, self._halfResolutionY, flipAngle)
            dstPoints = ((destPoint1[0], destPoint1[1]),(destPoint2[0], destPoint2[1]),(destPoint3[0],destPoint3[1]))
            zoomMatrix = cv.CreateMat(2,3,cv.CV_32F)
#            print "DEBUG pcn: trasform points source: " + str(srcPoints) + " dest: " + str(dstPoints) 
            cv.GetAffineTransform(srcPoints, dstPoints, zoomMatrix)
            cv.WarpAffine(image, mixMat, zoomMatrix)
            cv.Set(self._mixMixMask2, (255,255,255))
            cv.WarpAffine(self._mixMixMask2, self._mixMixMask1, zoomMatrix)
            return mixMat, self._mixMixMask1
        calcMaskValue = 255 - (255* level)
        cv.Set(self._mixMixMask1, (calcMaskValue, calcMaskValue, calcMaskValue))
        return image, self._mixMixMask1
コード例 #27
0
import cv2.cv as cv

im = cv.LoadImage("../img/lena.jpg", 3)

cv.SetImageROI(im, (50, 50, 150, 150))

cv.Zero(im)
#cv.Set(im, cv.RGB(100, 100, 100))

cv.ResetImageROI(im)

cv.ShowImage("Image", im)

cv.WaitKey(0)
コード例 #28
0
def gen_sweep_plane(src_Hs, src_frames):

    max_poly = None  # the bound of the blended image
    bldIm = None  # the blended plane image
    cost_info = None  # An array structure to collect pixel colors of
    # blended frames
    nframes = len(src_frames)
    o = np.array([[0], [0], [1]])  # origin = zero

    # Get max polygon
    for k in range(nframes):
        cpoly = Rect(Point(0, 0),
                     Point(src_frames[k].shape[1],
                           src_frames[k].shape[0])).get_trans_regpoly(
                               src_Hs[k], 10)
        if (k == 0):
            max_poly = cpoly
        else:
            max_poly = max_poly | cpoly
        #end if
    #end for

    (xmin, xmax, ymin, ymax) = max_poly.boundingBox(0)
    max_rec = Rect(Point(xmin, ymin), Point(xmax, ymax))
    #print "Max: " , max_rec, "W: ", max_rec.width(), " H: ", max_rec.height()

    #alocate costs and count matrixes
    cost_info = np.zeros(
        [int(max_rec.height()),
         int(max_rec.width()), nframes, 3],
        dtype=np.int)
    counts = np.zeros(
        [int(max_rec.height()), int(max_rec.width())], dtype=np.int)

    bldIm = cv.CreateMat(int(np.round(max_rec.height())),
                         int(np.round(max_rec.width())), cv.CV_32FC3)
    cv.Zero(bldIm)

    for k in range(nframes):
        cur_H = src_Hs[k]
        cur_o = np.dot(cur_H, o)
        #  translate the warped frame to origin from topleft corner
        disp = np.array([[1, 0, (0 - cur_o[0, 0]) / cur_o[2, 0]],
                         [0, 1, (0 - cur_o[1, 0]) / cur_o[2, 0]], [0, 0, 1]])
        o_H = np.dot(disp, cur_H)
        tpoly = Rect(Point(0, 0),
                     Point(src_frames[k].shape[1],
                           src_frames[k].shape[0])).get_trans_poly(cur_H)
        cpoly = Rect(Point(0, 0),
                     Point(src_frames[k].shape[1],
                           src_frames[k].shape[0])).get_trans_regpoly(
                               cur_H, 10)
        (xmin, xmax, ymin, ymax) = cpoly.boundingBox(0)
        frec = Rect(Point(xmin, ymin), Point(xmax, ymax))

        mask = gen_mask(frec, tpoly)

        #print "Rec: ", frec, "W: ", frec.width(), " H: ", frec.height()

        if k == 0:
            fwarp = cv2.warpPerspective(
                src_frames[k], o_H, (int(frec.width()), int(frec.height())))
            # get blended image
            blend_views(bldIm, fwarp, mask, frec, max_rec)
            # determine costs
            collect_costs_info(cost_info, counts, fwarp, mask, frec, max_rec,
                               k)
        else:
            fwarp = cv2.warpPerspective(
                src_frames[k], o_H, (int(frec.width()), int(frec.height())))

            # get blended image
            blend_views(bldIm, fwarp, mask, frec, max_rec)
            # determine costs
            collect_costs_info(cost_info, counts, fwarp, mask, frec, max_rec,
                               k)
        #end if
    #end for

    bldIm = np.asarray(bldIm)

    # Scale blended image to 8U
    bldIm8U = scaleTo8U(bldIm, counts)

    ## Measure Cost
    costs = None
    costs = calculate_costs(cost_info, counts)

    ##return blended image and costs
    return (bldIm8U, costs, max_rec)
コード例 #29
0
    moments = cv.Moments(cv.GetMat(imgYellowTresh), 1)
    moment10 = cv.GetSpatialMoment(moments, 1, 0)
    moment01 = cv.GetSpatialMoment(moments, 0, 1)
    area = cv.GetCentralMoment(moments, 0, 0)  #Get the center

    lastx = posx
    lasty = posy
    if area == 0:
        posx = 0
        posy = 0
    else:
        posx = moment10 / area
        posy = moment01 / area

    if lastx > 0 and lasty > 0 and posx > 0 and posy > 0:  #Mean we have received coordinates to print
        #Draw the line
        cv.Line(imgScribble, (int(posx), int(posy)), (int(lastx), int(lasty)),
                cv.Scalar(0, 255, 255), 3, 1)

    #Add the frame and the line image to see lines on the webcam frame
    cv.Add(frame, imgScribble, frame)

    cv.ShowImage("video", frame)
    cv.ShowImage("thresh", imgYellowTresh)
    c = cv.WaitKey(1)
    if c == 27 or c == 1048603:  #Break if user enters 'Esc'.
        break
    elif c == 1048690:  # 'r' for reset
        cv.Zero(imgScribble)
コード例 #30
0
ファイル: kmeans.py プロジェクト: r4mp/cinelerra
            if k != cluster_count:
                last = (k + 1) * sample_count / cluster_count

            point_chunk = cv.GetRows(points, first, last)

            cv.RandArr(rng, point_chunk, cv.CV_RAND_NORMAL,
                       cv.Scalar(center[0], center[1], 0, 0),
                       cv.Scalar(img.width * 0.1, img.height * 0.1, 0, 0))

        # shuffle samples
        cv.RandShuffle(points, rng)

        cv.KMeans2(points, cluster_count, clusters,
                   (cv.CV_TERMCRIT_EPS + cv.CV_TERMCRIT_ITER, 10, 1.0))

        cv.Zero(img)

        for i in range(sample_count):
            cluster_idx = int(clusters[i, 0])
            pt = (cv.Round(points[i, 0][0]), cv.Round(points[i, 0][1]))
            cv.Circle(img, pt, 2, color_tab[cluster_idx], cv.CV_FILLED,
                      cv.CV_AA, 0)

        cv.ShowImage("clusters", img)

        key = cv.WaitKey(0) % 0x100
        if key in [27, ord('q'), ord('Q')]:
            break

    cv.DestroyWindow("clusters")