def get_hog_feature(roi): """ Compute HOG of ROI.\n :param roi: Region of interest, ndarray\n :return: HOG feature, ndarray """ winSize = (roi.shape[0], roi.shape[1]) blockSize = (8, 8) blockStride = (1, 1) cellSize = (8, 8) nbins = 9 derivAperture = 1 winSigma = 4.0 histogramNormType = 0 L2HysThreshold = 2.0000000000000001e-01 gammaCorrection = 0 nlevels = 64 # Builder descriptor descriptor = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins, derivAperture, winSigma, histogramNormType, L2HysThreshold, gammaCorrection, nlevels) # Compute HOG winStride = (8, 8) padding = (8, 8) locations = [] hist = descriptor.compute(roi, winStride, padding, locations) # Size: (437400, 1) return hist / np.sum(hist) # Normalization
def obtain_hog_features(img): hog = cv2.HOGDescriptor() winStride = (4, 4) padding = (4, 4) locations = ((5, 10), ) #h = hog.compute(img,winStride,padding,locations) h = hog.compute(img) return h.flatten()
def model_cut(path): # initialize the HOG descriptor/person detector hog = cv2.HOGDescriptor() hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) #path=r"./image" #文件路径 filelist = sorted(os.listdir(path), key=lambda x: int(x[:-4])) #该文件夹下的所有文件 status = [] # loop over the image paths for imagePath in filelist: if imagePath == '.DS_Store': continue else: # load the image and resize it to (1) reduce detection time # and (2) improve detection accuracy image = cv2.imread(path + '/' + imagePath) image = imutils.resize(image, width=min(400, image.shape[1])) orig = image.copy() # detect people in the image (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4), padding=(8, 8), scale=1.05) # draw the original bounding boxes for (x, y, w, h) in rects: cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2) # apply non-maxima suppression to the bounding boxes using a # fairly large overlap threshold to try to maintain overlapping # boxes that are still people rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects]) pick = non_max_suppression(rects, probs=None, overlapThresh=0.65) # draw the final bounding boxes for (xA, yA, xB, yB) in pick: cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2) # show some information on the number of bounding boxes filename = imagePath[imagePath.rfind("/") + 1:] print("[INFO] {}: {} original boxes, {} after suppression".format( filename, len(rects), len(pick))) if len(rects) != 0 and len(pick) != 0: status.append(1) else: status.append(0) # show the output images # cv2.imshow("Before NMS", orig) # cv2.moveWindow("trans:"+filename,500,0) # cv2.imshow("After NMS", image) # cv2.waitKey(1) return len(filelist), status
def _calculate_hog(self, image): winSize = (60, 120) blockSize = (6, 6) blockStride = (6, 6) cellSize = (6, 6) nbins = 6 derivAperture = 1 winSigma = 4. histogramNormType = 0 L2HysThreshold = 2.0000000000000001e-01 gammaCorrection = 0 nlevels = 64 hogs = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins, derivAperture, winSigma, histogramNormType, L2HysThreshold, gammaCorrection, nlevels) hog_feats = hogs.compute(image) return hog_feats.reshape(20, 10, nbins)
def get_hog_features(trainset): features = [] hog = cv2.HOGDescriptor('../hog.xml') for img in trainset: img = np.reshape(img, (28, 28)) cv_img = img.astype(np.uint8) hog_feature = hog.compute(cv_img) # hog_feature = np.transpose(hog_feature) features.append(hog_feature) features = np.array(features) features = np.reshape(features, (-1, 324)) return features
from imutils.object_detection import non_max_suppression import numpy as np import argparse # Construct the argument parse and parse the arguments ap = argparse.ArgumentParser() #creating an ArgumentParser object ap.add_argument("-i", "--images", required=True, help="path to images directory") args = vars( ap.parse_args() ) #parse_args() inspects the command line and converts each argument into the appropriate type and invokes the required action # Initialize the HOG(Histogram of Oriented Gradients) descriptor/person detector hog = cv2.HOGDescriptor() #creation of the HOG descriptor hog.setSVMDetector( cv2.HOGDescriptor_getDefaultPeopleDetector() ) # we set up the Support Vector Machine to be pre-trained for pedestrian detection # Loop through the images in images directory for imagePath in paths.list_images(args["images"]): # load the image and resize it to reduce detection time & improve accuracy image = cv2.imread(imagePath) image = imutils.resize(image, width=min(400, image.shape[1])) orig = image.copy() # detect persons in the image rects, weights = hog.detectMultiScale(image, winStride=(4, 4), padding=(8, 8),
def hog_extractor(path): img = cv.imread(path) hog = cv.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins) hog_feature = hog.compute(img, winStride, padding).reshape((-1,)) return hog_feature
def obtain_hog_features(img): hog = cv2.HOGDescriptor() h = hog.compute(img) return h.flatten()