def test_simple(self): img = self.get_sample('stitching/a1.png') finder= cv.ORB.create() imgFea = cv.detail.computeImageFeatures2(finder,img) self.assertIsNotNone(imgFea) matcher = cv.detail_BestOf2NearestMatcher(False, 0.3) self.assertIsNotNone(matcher) matcher = cv.detail_AffineBestOf2NearestMatcher(False, False, 0.3) self.assertIsNotNone(matcher) matcher = cv.detail_BestOf2NearestRangeMatcher(2, False, 0.3) self.assertIsNotNone(matcher) estimator = cv.detail_AffineBasedEstimator() self.assertIsNotNone(estimator) estimator = cv.detail_HomographyBasedEstimator() self.assertIsNotNone(estimator) adjuster = cv.detail_BundleAdjusterReproj() self.assertIsNotNone(adjuster) adjuster = cv.detail_BundleAdjusterRay() self.assertIsNotNone(adjuster) adjuster = cv.detail_BundleAdjusterAffinePartial() self.assertIsNotNone(adjuster) adjuster = cv.detail_NoBundleAdjuster() self.assertIsNotNone(adjuster) compensator=cv.detail.ExposureCompensator_createDefault(cv.detail.ExposureCompensator_NO) self.assertIsNotNone(compensator) compensator=cv.detail.ExposureCompensator_createDefault(cv.detail.ExposureCompensator_GAIN) self.assertIsNotNone(compensator) compensator=cv.detail.ExposureCompensator_createDefault(cv.detail.ExposureCompensator_GAIN_BLOCKS) self.assertIsNotNone(compensator) seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) self.assertIsNotNone(seam_finder) seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) self.assertIsNotNone(seam_finder) seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM) self.assertIsNotNone(seam_finder) seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR") self.assertIsNotNone(seam_finder) seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR_GRAD") self.assertIsNotNone(seam_finder) seam_finder = cv.detail_DpSeamFinder("COLOR") self.assertIsNotNone(seam_finder) seam_finder = cv.detail_DpSeamFinder("COLOR_GRAD") self.assertIsNotNone(seam_finder) blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) self.assertIsNotNone(blender) blender = cv.detail.Blender_createDefault(cv.detail.Blender_FEATHER) self.assertIsNotNone(blender) blender = cv.detail.Blender_createDefault(cv.detail.Blender_MULTI_BAND) self.assertIsNotNone(blender) timelapser = cv.detail.Timelapser_createDefault(cv.detail.Timelapser_AS_IS); self.assertIsNotNone(timelapser) timelapser = cv.detail.Timelapser_createDefault(cv.detail.Timelapser_CROP); self.assertIsNotNone(timelapser)
def __init__(self, matcher_type=DEFAULT_MATCHER, range_width=DEFAULT_RANGE_WIDTH, **kwargs): if matcher_type == "affine": """https://docs.opencv.org/4.x/d3/dda/classcv_1_1detail_1_1AffineBestOf2NearestMatcher.html""" # noqa self.matcher = cv.detail_AffineBestOf2NearestMatcher(**kwargs) elif range_width == -1: """https://docs.opencv.org/4.x/d4/d26/classcv_1_1detail_1_1BestOf2NearestMatcher.html""" # noqa self.matcher = cv.detail_BestOf2NearestMatcher(**kwargs) else: """https://docs.opencv.org/4.x/d8/d72/classcv_1_1detail_1_1BestOf2NearestRangeMatcher.html""" # noqa self.matcher = cv.detail_BestOf2NearestRangeMatcher( range_width, **kwargs )
def get_matcher(args): try_cuda = args.try_cuda matcher_type = args.matcher if args.match_conf is None: if args.features == 'orb': match_conf = 0.3 else: match_conf = 0.65 else: match_conf = args.match_conf range_width = args.rangewidth if matcher_type == "affine": matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf) elif range_width == -1: matcher = cv.detail_BestOf2NearestMatcher(try_cuda, match_conf) else: matcher = cv.detail_BestOf2NearestRangeMatcher(range_width, try_cuda, match_conf) return matcher
def main(): img_names = [r'C:\Scratch\IPA_Data\FullRes\a0_nor.tif', r'C:\Scratch\IPA_Data\FullRes\a1_nor.tif', r'C:\Scratch\IPA_Data\FullRes\a2_nor.tif', r'C:\Scratch\IPA_Data\FullRes\a3_nor.tif', r'C:\Scratch\IPA_Data\FullRes\a4_nor.tif', r'C:\Scratch\IPA_Data\FullRes\a5_nor.tif', r'C:\Scratch\IPA_Data\FullRes\a6_nor.tif', r'C:\Scratch\IPA_Data\FullRes\a7_nor.tif', r'C:\Scratch\IPA_Data\FullRes\a8_nor.tif', r'C:\Scratch\IPA_Data\FullRes\a9_nor.tif'] # r'C:\Scratch\IPA_Data\FullRes\b0_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\b1_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\b2_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\b3_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\b4_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\b5_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\b6_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\b7_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\b8_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\b9_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c0_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c1_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c2_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c3_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c4_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c5_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c6_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c7_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c8_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\c9_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d0_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d1_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d2_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d3_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d4_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d5_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d6_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d7_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d8_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\d9_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e0_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e1_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e2_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e3_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e4_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e5_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e6_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e7_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e8_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\e9_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f0_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f1_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f2_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f3_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f4_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f5_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f6_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f7_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f8_nor.tif', # r'C:\Scratch\IPA_Data\FullRes\f9_nor.tif'] print(img_names) # ================ DEFINE ALL PARAMETERS ================ # Flags try_cuda = False work_megapix = 8 features_type = "surf" matcher_type = "affine" estimator_type = "affine" match_conf = 0.75 conf_thresh = 1.0 ba_cost_func = "affine" ba_refine_mask = "xxxxx" wave_correct = "vert" save_graph_var = None # Compositing Flags warp_type = "affine" seam_megapix = 2.0 seam_find_type = "gc_color" compose_megapix = -1 expos_comp = "no" expos_comp_nr_feeds = 1 # expos_comp_nr_filtering = 2 expos_comp_block_size = 32 blend_type = "multiband" blend_strength = 5 result_name = "test_result_3.png" timelapse_name = None range_width = 8 # Check if there is to be wave correction, then set the boolean check value if wave_correct == 'no': do_wave_correct = False else: do_wave_correct = True # Check if there is to be a graph file created if save_graph_var is None: save_graph = False else: save_graph = True save_graph_to = save_graph_var # Check if the exposure is to be compensated, if so define which compensator to use if expos_comp == 'no': expos_comp_type = cv.detail.ExposureCompensator_NO elif expos_comp == 'gain': expos_comp_type = cv.detail.ExposureCompensator_GAIN elif expos_comp == 'gain_blocks': expos_comp_type = cv.detail.ExposureCompensator_GAIN_BLOCKS elif expos_comp == 'channel': expos_comp_type = cv.detail.ExposureCompensator_CHANNELS elif expos_comp == 'channel_blocks': expos_comp_type = cv.detail.ExposureCompensator_CHANNELS_BLOCKS else: print("Bad exposure compensation method") exit() # Check if the timelapse is to be output. AKA the intermediate layers if timelapse_name is not None: timelapse = True if timelapse_name == "as_is": timelapse_type = cv.detail.Timelapser_AS_IS elif timelapse_name == "crop": timelapse_type = cv.detail.Timelapser_CROP else: print("Bad timelapse method") exit() else: timelapse = False # Check the feature type to be used and create the finder class that will be used # TODO - See if there other feature detectors which are more suitable if features_type == 'orb': finder = cv.ORB.create(500, 1.1, 8, 50, 0, 2, 0, 50, 20) elif features_type == 'surf': finder = cv.xfeatures2d_SURF.create(100, 8, 4, False, False) elif features_type == 'sift': finder = cv.xfeatures2d_SIFT.create() else: print("Unknown descriptor type") exit() # Pre-allocate other variables to work with seam_work_aspect = 1 # Seam aspect ratio full_img_sizes = [] # Size of full images features = [] # Array for storing features images = [] # Array for storing information about images is_work_scale_set = False # Bool for working image scaling is_seam_scale_set = False # Bool for seams scaling is_compose_scale_set = False # Bool for composition image scaling # Iterate through the image names for name in img_names: # Reads the image into a numpy array full_img = cv.imread(cv.samples.findFile(name)) # Check if the file could be read successfully if full_img is None: print("Cannot read image ", name) exit() # Add image size to the list ... # TODO Could change this to be constant... full_img_sizes.append((full_img.shape[1], full_img.shape[0])) # Define the working scale the images should be used based on the number of megapixel entered if work_megapix < 0: # If a negative value entered, use its true scale img = full_img work_scale = 1 is_work_scale_set = True else: if is_work_scale_set is False: work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1]))) is_work_scale_set = True img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT) # Define the scale for the seams that they will be processed if is_seam_scale_set is False: seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1]))) seam_work_aspect = seam_scale / work_scale is_seam_scale_set = True # Get the image features for this image img_fea = cv.detail.computeImageFeatures2(finder, img) test_feat_img = cv.drawKeypoints(img, img_fea.getKeypoints(), None, (255, 0, 0), 4) cv.namedWindow('image', cv.WINDOW_NORMAL) cv.imshow('image', test_feat_img) cv.resizeWindow('image', int(full_img_sizes[0][0] / 10), int(full_img_sizes[0][1] / 10)) cv.waitKey() features.append(img_fea) img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT) images.append(img) # Define the matcher type to be used for the features if matcher_type == "affine": matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf) elif range_width == -1: matcher = cv.detail_BestOf2NearestMatcher(try_cuda, match_conf) else: matcher = cv.detail_BestOf2NearestRangeMatcher(range_width, try_cuda, match_conf) # Apply the matcher to the features, obtaining matches between them p = matcher.apply2(features) # Frees unused memory matcher.collectGarbage() # Save the graph if chosen if save_graph: f = open(save_graph_to, "w") f.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh)) f.close() # Remove matches if not above a confidence threshold indices = cv.detail.leaveBiggestComponent(features, p, match_conf) # Pre-allocate img_subset = [] # Array to hold subset of images numpy arrays? img_names_subset = [] # Array to list the names of subset images full_img_sizes_subset = [] # Sizes of the images in their full resolution within the subset num_images = len(indices) # Number of images as determined by the thresholding of the feature matches # TODO this appears to be the issue running into before... the matching beforehand is producing 0 results # Itearte through the images that were matched and get lists of matches/images for i in range(num_images): img_names_subset.append(img_names[indices[i, 0]]) # Append the names img_subset.append(images[indices[i, 0]]) # Append the actual image arrays full_img_sizes_subset.append(full_img_sizes[indices[i, 0]]) # Append their sizes # Update the list of images and image names images = img_subset img_names = img_names_subset full_img_sizes = full_img_sizes_subset # Get new number of matched images (shouldn't change with the mosaicing project num_images = len(img_names) # Do a simple test to check if sufficient images if num_images < 2: print("Need more images") exit() # Generate the estimator based on what was set to determine approximate relative orientation parameters if estimator_type == "affine": estimator = cv.detail_AffineBasedEstimator() else: estimator = cv.detail_HomographyBasedEstimator() b, cameras = estimator.apply(features, p, None) # Check if estimation passed based on the boolean 'b' if not b: print("Homography estimation failed.") exit() # Iterate through the camera orientations computed for cam in cameras: # Convert the camera rotation matrix to float 32 cam.R = cam.R.astype(np.float32) # TODO read up on the documentation here # Define bundle adjustment cost function if ba_cost_func == "reproj": adjuster = cv.detail_BundleAdjusterReproj() elif ba_cost_func == "ray": adjuster = cv.detail_BundleAdjusterRay() elif ba_cost_func == "affine": adjuster = cv.detail_BundleAdjusterAffinePartial() elif ba_cost_func == "no": adjuster = cv.detail_NoBundleAdjuster() else: print("Unknown bundle adjustment cost function: ", ba_cost_func) exit() # Set the threshold for the adjuster adjuster.setConfThresh(1) # Pre-allocate array of the mask to be applied to determine which camera parameters to compute refine_mask = np.zeros((3, 3), np.uint8) # Determine which parameters to compute? Or vice versa... not compute # TODO check this if ba_refine_mask[0] == 'x': refine_mask[0, 0] = 1 if ba_refine_mask[1] == 'x': refine_mask[0, 1] = 1 if ba_refine_mask[2] == 'x': refine_mask[0, 2] = 1 if ba_refine_mask[3] == 'x': refine_mask[1, 1] = 1 if ba_refine_mask[4] == 'x': refine_mask[1, 2] = 1 # Apply the refinement mask to the adjuster adjuster.setRefinementMask(refine_mask) # Recompute the camera orientation parameters with the refinement mask b, cameras = adjuster.apply(features, p, cameras) # Check if the parameters adjusted correctly if not b: print("Camera parameters adjusting failed.") exit() # Get list of focal lengths to scale images accordingly... # TODO probably remove this scaling as not required for this project, thus warped_image_scale should stay = 1 focals = [] for cam in cameras: focals.append(cam.focal) sorted(focals) if len(focals) % 2 == 1: warped_image_scale = focals[len(focals) // 2] else: warped_image_scale = (focals[len(focals) // 2]+focals[len(focals) // 2-1])/2 # Perform the wave correction # TODO adjust this... only performs a horizontal correction, need to implement a vertical correction. Possibly both. # Potentially not required at all if the estimation of camera parameter bundle adjustment is performed well if do_wave_correct: rmats = [] for cam in cameras: rmats.append(np.copy(cam.R)) if wave_correct == 'vert': rmats = cv.detail.waveCorrect(rmats, cv.detail.WAVE_CORRECT_VERT) elif wave_correct == 'horiz': rmats = cv.detail.waveCorrect(rmats, cv.detail.WAVE_CORRECT_HORIZ) for idx, cam in enumerate(cameras): cam.R = rmats[idx] # Pre-allocation corners = [] # Dimensions of warped images masks_warped = [] # The masking regions of the warped areas images_warped = [] # the images warped sizes = [] # Sizes of ....? masks = [] # Masks for the seams ...? # Iterate through the images creating 'i' as the index number and appending the pre-allocated mask for i in range(0, num_images): um = cv.UMat(255*np.ones((images[i].shape[0], images[i].shape[1]), np.uint8)) masks.append(um) # This creates the warper to be used to distort the images according to the layout or shape they're to be stitched warper = cv.PyRotationWarper(warp_type, warped_image_scale*seam_work_aspect) # Iterate through the images to create the seams for idx in range(0, num_images): # Get the respective camera matrix mat_k = cameras[idx].K().astype(np.float32) # Scale the K matrix for the seam aspect scale mat_k[0, 0] *= seam_work_aspect mat_k[0, 2] *= seam_work_aspect mat_k[1, 1] *= seam_work_aspect mat_k[1, 2] *= seam_work_aspect # Project the image into the warping shape # TODO Not sure if we actually need the images warped. If the rotation and translation should suffice corner, image_wp = warper.warp(images[idx], mat_k, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT) corners.append(corner) sizes.append((image_wp.shape[1], image_wp.shape[0])) images_warped.append(image_wp) # Warp the masks as well p, mask_wp = warper.warp(masks[idx], mat_k, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT) masks_warped.append(mask_wp.get()) # Pre-allocation and conversion of the images warped images to floats images_warped_f = [] for img in images_warped: imgf = img.astype(np.float32) images_warped_f.append(imgf) # If exposure correction required.... Shouldn't although there is one bad image in there so quite possibly if cv.detail.ExposureCompensator_CHANNELS == expos_comp_type: compensator = cv.detail_ChannelsCompensator(expos_comp_nr_feeds) # compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering) elif cv.detail.ExposureCompensator_CHANNELS_BLOCKS == expos_comp_type: compensator = cv.detail_BlocksChannelsCompensator( expos_comp_block_size, expos_comp_block_size, expos_comp_nr_feeds) # compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering) else: compensator = cv.detail.ExposureCompensator_createDefault(expos_comp_type) # Apply the exposure compensator? Or set it up at least compensator.feed(corners=corners, images=images_warped, masks=masks_warped) # Define the type of seam finder to be used if seam_find_type == "no": seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) elif seam_find_type == "voronoi": seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM) elif seam_find_type == "gc_color": seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR") elif seam_find_type == "gc_colorgrad": seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR_GRAD") elif seam_find_type == "dp_color": seam_finder = cv.detail_DpSeamFinder("COLOR") elif seam_find_type == "dp_colorgrad": seam_finder = cv.detail_DpSeamFinder("COLOR_GRAD") if seam_finder is None: print("Can't create the following seam finder ", seam_find_type) exit() # Find the seams # TODO potentially try using the non-warped images seam_finder.find(images_warped_f, corners, masks_warped) # Clear the variables from memory / use later imgListe = [] images_warped = [] images_warped_f = [] masks = [] # Clear or pre-allocate variables compose_scale = 1 corners = [] sizes = [] blender = None timelapser = None compose_work_aspect = 1 # Iterate through all the images again for idx, name in enumerate(img_names): # Read in image and get the composition scale. Should be left to 1... # TODO check the composition scale and whether this needs to be scaled full_img = cv.imread(name) # Compute the composition scale, work aspect ratio, warped image scale and create a warper to scale if not is_compose_scale_set: if compose_megapix > 0: compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1]))) is_compose_scale_set = True compose_work_aspect = compose_scale / work_scale warped_image_scale *= compose_work_aspect warper = cv.PyRotationWarper(warp_type, warped_image_scale) for i in range(0, len(img_names)): # Adjust the camera parameters based on the composition work aspect ratio cameras[i].focal *= compose_work_aspect cameras[i].ppx *= compose_work_aspect cameras[i].ppy *= compose_work_aspect # Compute the size of the scaled full image sz = (full_img_sizes[i][0] * compose_scale, full_img_sizes[i][1]*compose_scale) # Get the intrinsic camera matrix mat_k = cameras[i].K().astype(np.float32) # Generate a warper for the rotation and intrinsic matrix # TODO this could possibly be just the rotation matrix # One possibility this isn't working is due to it should be translating images... roi = warper.warpRoi(sz, mat_k, cameras[i].R) # Get the corners from the output parameters corners.append(roi[0:2]) # Get the sizes of the output parameters sizes.append(roi[2:4]) # Scale the image to a size greater than the full resolution, otherwise leave as is if abs(compose_scale - 1) > 1e-1: img = cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale, interpolation=cv.INTER_LINEAR_EXACT) else: img = full_img # Create a tuple of the image size img_size = (img.shape[1], img.shape[0]) # Convert the intrinsic matrix to float 32 mat_k = cameras[idx].K().astype(np.float32) # Warp the images accordingly... # TODO look at the interpolation and border values corner, image_warped = warper.warp(img, mat_k, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT) # Define the masks and warp them as well to the same shape mask = 255*np.ones((img.shape[0], img.shape[1]), np.uint8) p, mask_warped = warper.warp(mask, mat_k, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT) # Apply the exposure compensation compensator.apply(idx, corners[idx], image_warped, mask_warped) # Convert the images back to integer for minimal memory use image_warped_s = image_warped.astype(np.int16) image_warped = [] # Clear variable # Dilate the warped mask image dilated_mask = cv.dilate(masks_warped[idx], None) # Resize the dilated mask to create the seam mask seam_mask = cv.resize(dilated_mask, (mask_warped.shape[1], mask_warped.shape[0]), 0, 0, cv.INTER_LINEAR_EXACT) # Get the output seam mask_warped = cv.bitwise_and(seam_mask, mask_warped) # If the blender object hasn't been created yet if blender is None and not timelapse: blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) dst_sz = cv.detail.resultRoi(corners=corners, sizes=sizes) # Get the blend width blend_width = np.sqrt(dst_sz[2]*dst_sz[3]) * blend_strength / 100 # Check if a width is computed. Based on the blend strength if blend_width < 1: blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) # Create a multiband blender elif blend_type == "multiband": blender = cv.detail_MultiBandBlender() blender.setNumBands((np.log(blend_width)/np.log(2.) - 1.).astype(np.int)) # Create a feather blender elif blend_type == "feather": blender = cv.detail_FeatherBlender() blender.setSharpness(1./blend_width) # Prepare the blender based on the distance blender.prepare(dst_sz) # If a timelapse type is passed, create the timelapser object elif timelapser is None and timelapse: timelapser = cv.detail.Timelapser_createDefault(timelapse_type) timelapser.initialize(corners, sizes) # If the timelapse parameter is passed if timelapse: # Initialise an array of ones of the right shape matones = np.ones((image_warped_s.shape[0], image_warped_s.shape[1]), np.uint8) # Adds the warped image into the list timelapser.process(image_warped_s, matones, corners[idx]) # Get the index for where the file name starts pos_s = img_names[idx].rfind("/") # Get the fixed file name if pos_s == -1: fixed_file_name = "fixed_" + img_names[idx] else: fixed_file_name = img_names[idx][:pos_s + 1]+"fixed_" + img_names[idx][pos_s + 1:] # Write the temporary partial image cv.imwrite(fixed_file_name, timelapser.getDst()) else: # Pass the warped image into the blender blender.feed(cv.UMat(image_warped_s), mask_warped, corners[idx]) # If the timelapse parameter is not passed if not timelapse: # Pre-allocate the results result = None result_mask = None # Get the blended results result, result_mask = blender.blend(result, result_mask) # Output the final result cv.imwrite(result_name, result) # Make the image shape fit into the window zoomx = 600.0 / result.shape[1] # Show the final output dst = cv.normalize(src=result, dst=None, alpha=255., norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U) dst = cv.resize(dst, dsize=None, fx=zoomx, fy=zoomx) cv.imshow(result_name, dst) cv.waitKey() print('Done')