コード例 #1
0
def outputs():
	global numFrames, time
	stream = io.BytesIO()
	for i in range(controlFrames):
        # This returns the stream for the camera to capture to

		e1 = cv2.getTickCount()
		yield stream
		stream.seek(0)

		data = np.fromstring(stream.getvalue(), dtype=np.uint8)
		open_cv_image = cv2.imdecode(data, 1)

		if filtering:
			filt.image = open_cv_image
			f, i, c, h = filt.rgbGet(cv2.CHAIN_APPROX_SIMPLE, Constants.VIDEOS_RGB_FILTER_CONSTANTS_1)
			output = filt.run(filt.image)

		try:
			numFrames += 1
			# queue.put(open_cv_image) 
		except:
			print "FULL QUEUE"
		stream.seek(0)
		stream.truncate()

		e2 = cv2.getTickCount()
		time += (e2-e1)/cv2.getTickFrequency()
コード例 #2
0
    def _calculate_metric(self, x, y, transformer, print_row):

        tickFrequency = cv2.getTickFrequency()

        var_x = numpy.var(x, axis=0)
        var_y = numpy.var(y, axis=0)

        loss_var_x = numpy.mean(var_x)
        loss_var_y = numpy.mean(var_y)

        loss = calculate_reconstruction_error(x, y)
        matches = match_error(x, y)

        start_tick = cv2.getTickCount()
        if self.top == 0:
            correlation = (calculate_mardia(x, y, 0) / x.shape[1]) * 100
        else:
            correlation = (calculate_mardia(x, y, self.top) / self.top) * 100

        current_time = cv2.getTickCount()
        OutputLog().write('calculated correlation, time: {0}'.format(((current_time - start_tick) / tickFrequency)),
                          'debug')

        print_row.append(correlation)
        print_row.append(loss)
        print_row.append(loss_var_x)
        print_row.append(loss_var_y)
        print_row.append(matches)

        return correlation
コード例 #3
0
ファイル: MLP.py プロジェクト: kelvict/rnn-py
 def train_data(self, train, target, epochs = 1, log=False):
     result = numpy.zeros(epochs)
     len_all_inputs = len(train)
     
     for epoch in range(0, epochs):
         
         if log:
             print "Executando Epoca %d..." %(epoch+1)
             e1 = cv2.getTickCount()
         
         for i, inputs in enumerate(train):
             correct = target[i]
             
             output, correct = self.__train(inputs, correct, log)
             
             result[epoch] = result[epoch] + numpy.mean((correct - output)**2)/len_all_inputs
             
         self.__update()
         
         if log:
             e2 = getTickCount()
             time = (e2 - e1)/cv2.getTickFrequency()
             print "Epoca %d Resultado = %f, Tempo de Execucao %f segundos" %(epoch+1,result[epoch], time)
     
     return result          
コード例 #4
0
ファイル: detector.py プロジェクト: hphp/Kaggle
def detect_and_draw( img):
    """
    draw a box with opencv on the image around the detected faces and display the output
    """
    from random import randint 
    start_time = cv2.getTickCount()
    dog_classifier=DogClassifier()
    print dog_classifier
    dogs,cats = detectByMuitScaleSlideWindows(img,windowSize=(50,50),classifier=dog_classifier)
    end_time = cv2.getTickCount() 
    logging.info("time cost:%gms",(end_time-start_time)/cv2.getTickFrequency()*1000.)
    #dogs = detectObject(img)
    print "found dogs:",len(dogs)
    max_rect=(0,0,0,0)
    for rect in dogs:
        x,y,w,h=rect
        if w*h>max_rect[2]*max_rect[3]:
            max_rect=rect
    x,y,w,h=max_rect
    cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,255), 1)

    print "found cats:",len(cats)
    max_rect=(0,0,0,0)
    for rect in cats:
        x,y,w,h=rect
        if w*h>max_rect[2]*max_rect[3]:
            max_rect=rect
    x,y,w,h=max_rect
    cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 1)

    cv2.imshow("result", img)
    cv2.waitKey(-1)
コード例 #5
0
ファイル: core_demo.py プロジェクト: JamesPei/PythonProjects
def bitwise():
    img1 = cv2.imread('messi.jpg')
    img2 = cv2.imread('python.jpg')
    e1 = cv2.getTickCount()

    # I want to put logo on top-left corner, So I create a ROI
    rows,cols,channels = img2.shape
    roi = img1[0:rows, 0:cols]

    # Now create a mask of logo and create its inverse mask also
    img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
    # cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dst
    ret, mask = cv2.threshold(img2gray, 230, 255, cv2.THRESH_BINARY_INV)     #Applies a fixed-level threshold to each array element.
    mask_inv = cv2.bitwise_not(mask)

    # Now black-out the area of logo in ROI
    img1_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)

    # Take only region of logo from logo image.
    img2_fg = cv2.bitwise_and(img2,img2,mask = mask)

    # Put logo in ROI and modify the main image
    dst = cv2.add(img1_bg,img2_fg)
    img1[0:rows, 0:cols] = dst

    e2 =cv2.getTickCount()
    t = (e2- e1)/cv2.getTickFrequency()
    print t
    cv2.imshow('res',img1)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
コード例 #6
0
ファイル: cam_states.py プロジェクト: chipgarner/CamDreams
    def get_state(self, motion_detect):

        if self.state == 'start_dreaming':
            self.__dreaming_start()

        elif self.state == 'fade_dream_to_frame':
            self.state = 'fading'

        elif self.state == 'fading':
            self.__fading()

        elif motion_detect > self.motion_threshold:
            self.__on_motion_above_threshold()

        elif cv2.getTickCount() - self.low_motion_last_time > self.LOW_MOTION_TIMEOUT:
            self.state = 'waiting'

        else:
            if motion_detect > self.LOW_THRESHOLD:
                self.low_motion_last_time = cv2.getTickCount()

            if self.motion:
                self.start_time = cv2.getTickCount()
                self.motion = False
            else:
                if self.state == 'dreaming':
                    how_long = cv2.getTickCount() - self.dream_start
                    if how_long > self.DREAM_OVER:
                        self.state = 'fade_dream_to_frame'
                elif self.state == 'show_frames':
                    how_long = cv2.getTickCount() - self.start_time
                    if how_long > 7000000000:
                        self.state = 'start_dreaming'

        return self.state
コード例 #7
0
ファイル: facedetect.py プロジェクト: StefQM/facedetect
 def run(self):
     """Run the main loop."""
     self._windowManager.createWindow()
     while self._windowManager.isWindowCreated:
         self._captureManager.enterFrame()
         frame = self._captureManager.frame
         
         if frame is not None:
             
             t = cv2.getTickCount()
             self._faceTracker.update(frame)
             faces = self._faceTracker.faces
             t = cv2.getTickCount() - t
             print("time taken for detection = %gms" % (t/(cv2.getTickFrequency())*1000.))
             
             # uncomment this line for swapping faces
             #rects.swapRects(frame, frame, [face.faceRect for face in faces])
             
             #filters.strokeEdges(frame, frame)
             #self._curveFilter.apply(frame, frame)
             
             if self._shouldDrawDebugRects:
                 self._faceTracker.drawDebugRects(frame)
                 self._faceTracker.drawLinesFromCenter(frame)
             
         self._captureManager.exitFrame()
         self._windowManager.processEvents()
コード例 #8
0
    def doTask(self, frame):
        time_now = cv2.getTickCount()
        time_end = (time_now - self.last_time) / cv2.getTickFrequency()

        # Record time value in a rolling sum where the oldest falls off
        # This way we can smooth out the FPS value
        oldest_val = self.time_records[self.time_rec_idx]
        if oldest_val > 0:
            self.time_total -= oldest_val 
        self.time_total += time_end 
        self.time_records[self.time_rec_idx] = time_end
        self.time_rec_idx = (self.time_rec_idx + 1) % NUM_TIME_RECORDS
    
        # Write FPS to frame
        #cv2.putText(frame, '%2.2f FPS' % (1 / time_end), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255))
        cv2.putText(frame, '%2.2f FPS' % (NUM_TIME_RECORDS / self.time_total), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255))

        cv2.imshow("Video", frame)

        self.last_time = cv2.getTickCount()

        if cv2.waitKey(1) & 0xFF == ord('q'):
            return False
        else:
            return True
def take_snapshot(delay=2):
  cap = cv2.VideoCapture(0)
  if not cap.isOpened():
    print "Cannot open camera!"
    return

  # Set video to 320x240
  cap.set(3, 320) 
  cap.set(4, 240)

  take_picture = False;
  t0, filenum = 0, 1

  while True:
    val, frame = cap.read()
    cv2.imshow("video", frame)

    key = cv2.waitKey(30)

    if key == ord(' '):
      t0 = cv2.getTickCount()
      take_picture = True
    elif key == ord('q'):
      break

    if take_picture and ((cv2.getTickCount()-t0) / cv2.getTickFrequency()) > delay:
      cv2.imwrite(str(filenum) + ".jpg", frame)
      filenum += 1
      take_picture = False

    cap.release()
コード例 #10
0
ファイル: camera_test.py プロジェクト: jiuya/TrackingCamera
def capture_camera(mirror=True, size=None):
    """Capture video from camera"""
    cap = cv2.VideoCapture(0)

    freq = 1000/cv2.getTickFrequency()
    start_time = cv2.getTickCount()
    oldcnt = 0
    cnt = 0
    while True:
        now_time  = cv2.getTickCount()
        diff_time = (now_time - start_time)*freq
        if diff_time > 1000:
            start_time = now_time
            fps = cnt - oldcnt
            oldcnt = cnt
            print fps

        ret, frame = cap.read()

        if mirror is True:
            frame = frame[:,::-1]

        if size is not None and len(size) == 2:
            frame = cv2.resize(frame, size)

        cv2.imshow('camera capture', frame)

        k = cv2.waitKey(1)
        if k == 27:
            break
        cnt += 1

    cap.release()
    cv2.destroyAllWindows()
コード例 #11
0
    def compute_outputs(self, test_set_x, test_set_y, hyperparameters):

        hidden_output_model = self._build_hidden_model()
        recon_model = self._build_reconstruction_model()

        hidden_values_x = []
        hidden_values_y = []

        number_of_batches = int(math.ceil(float(test_set_x.shape[0]) / hyperparameters.batch_size))

        outputs_hidden = None
        outputs_recon = None

        for i in range(number_of_batches):

            batch_x = test_set_x[
                      i * hyperparameters.batch_size: min((i + 1) * hyperparameters.batch_size, test_set_x.shape[0]), :]
            batch_y = test_set_y[
                      i * hyperparameters.batch_size: min((i + 1) * hyperparameters.batch_size, test_set_y.shape[0]), :]

            self._correlation_optimizer.var_x.set_value(batch_x)
            self._correlation_optimizer.var_y.set_value(batch_y)

            start_tick = cv2.getTickCount()
            outputs_hidden_batch = hidden_output_model()
            output_recon_batch = recon_model()

            tickFrequency = cv2.getTickFrequency()
            current_time = cv2.getTickCount()

            OutputLog().write('batch {0}/{1} ended, time: {2}'.format(i,
                                                                      number_of_batches,
                                                                      ((current_time - start_tick) / tickFrequency)),
                              'debug')

            if i == 0:
                outputs_recon = output_recon_batch
            else:
                for idx in range(len(outputs_recon)):
                    outputs_recon[idx] = numpy.concatenate((outputs_recon[idx], output_recon_batch[idx]), axis=0)

            if i == 0:
                outputs_hidden = outputs_hidden_batch
            else:
                for idx in range(len(outputs_hidden)):
                    outputs_hidden[idx] = numpy.concatenate((outputs_hidden[idx], outputs_hidden_batch[idx]), axis=0)

        for i in xrange(len(outputs_hidden) / 2):
            hidden_values_x.append(outputs_hidden[2 * i])
            hidden_values_y.append(outputs_hidden[2 * i + 1])

        # for i in xrange(len(outputs_recon) / 2):
        #     hidden_values_x.append(outputs_recon[2 * i])
        #     hidden_values_y.append(outputs_recon[2 * i + 1])

        # if hidden_values_x[0].shape[1] == hidden_values_y[-1].shape[1] and len(hidden_values_x) > 1:
        #     hidden_values_x.append(hidden_values_x[-1])
        #     hidden_values_y.append(hidden_values_y[0])

        return [hidden_values_x, hidden_values_y]
コード例 #12
0
    def serial_continuous(self, verbose=False):
        # assuming only one processor doing work
        # so kill others if they exist (they shouldn't though)
        if self.rank != 0:
            return

        self.log("Serial execution, continuous, action={0}".format(self.action))

        start_time = getTickCount()

        clip_num = 0
        while True:
            if verbose:
                print "Clip: {0}".format(clip_num)

            clip_num += 1
            in_frames = self.vid.read_next_clip()

            self.vid.write_frame_block(self.do_action(in_frames))

            # end on last frame block
            if len(in_frames) < self.vid.clip_size:
                break

        self.vid.destroy()
        end_time = getTickCount()
        comp_time = (end_time - start_time) / getTickFrequency()

        self.log("Computation time: {0} s".format(comp_time))
コード例 #13
0
ファイル: GUI.py プロジェクト: jabreu4/TakeHome2
def  WeinerFilter():
  e1 = cv2.getTickCount()
  astro = color.rgb2gray(data.imread(imagePath))
  psf = np.ones((5, 5)) / 25
  astro = conv2(astro, psf, 'same')
  astro += 0.1 * astro.std() * np.random.standard_normal(astro.shape)

  deconvolved, _ = restoration.unsupervised_wiener(astro, psf)

  fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 5), sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'})

  plt.gray()

  ax[0].imshow(astro, vmin=deconvolved.min(), vmax=deconvolved.max())
  ax[0].axis('off')
  ax[0].set_title('Original Picture')

  ax[1].imshow(deconvolved)
  ax[1].axis('off')
  ax[1].set_title('Self tuned restoration')

  fig.subplots_adjust(wspace=0.02, hspace=0.2,
                      top=0.9, bottom=0.05, left=0, right=1)
  e2 = cv2.getTickCount()
  time = (e2 - e1)/ cv2.getTickFrequency() + (numberThreads) + numberThreadsPerCore + numberCores
  msgbox(msg= str(time) +" seconds", title="Execution Time", ok_button="OK")
  plt.show()
コード例 #14
0
ファイル: detect_on_images.py プロジェクト: hphp/Kaggle
def detect_by_slide_windows( img):
    """
    draw a box with opencv on the image around the detected faces and display the output
    """
    from random import randint 
    start_time = cv2.getTickCount()
    dogcat_classifier=MultiClassifier()
    print dogcat_classifier
    img=cv2.resize(img,(100,100))
    dogs,cats = check_multiLocation_multiScale_windows(img,windowSize=(50,50),classifier=dogcat_classifier)
    end_time = cv2.getTickCount() 
    logging.info("time cost:%gms",(end_time-start_time)/cv2.getTickFrequency()*1000.)
    print "found dogs:",len(dogs)
    max_rect=(0,0,0,0)
    sum_rect=numpy.asarray((0,0,0,0),dtype=numpy.float)
    for rect in dogs:
        x,y,w,h=rect
        sum_rect +=rect
        if w*h>max_rect[2]*max_rect[3]:
            max_rect=rect
        #cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,255), 1)
    #x,y,w,h=max_rect
    x,y,w,h=numpy.asarray(sum_rect/len(dogs),dtype=numpy.uint)
    cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,255), 1)

    print "found cats:",len(cats)
    max_rect=(0,0,0,0)
    for rect in cats:
        x,y,w,h=rect
        if w*h>max_rect[2]*max_rect[3]:
            max_rect=rect
    x,y,w,h=max_rect
    cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 1)
    return img
コード例 #15
0
def Producer():
	global timeCapture, numFrames, time
	try:
		print "STARTED TO PRODUCE"
		tot1 = cv2.getTickCount()
		for frame in camera.capture_continuous(capture, format='bgr', use_video_port=True):
			# e1 = cv2.getTickCount()

			# QUEUE FULL EXCEPTION
			try:
				queue.put(frame.array)
				# print "PUT AN IMAGE"
			except:
				print "TOO BIG!"
			# e2 = cv2.getTickCount()
			# timeCapture += (e2-e1) / cv2.getTickFrequency()

			capture.truncate(0)
			if controlFrames != 0 and numFrames >= controlFrames:
				print "STOPPED PRODUCING"
				break
			else:
				# print numFrames
				numFrames += 1
	except KeyboardInterrupt:
		# IT HAS ENDED
		pass
	tot2 = cv2.getTickCount()
	total = (tot2 - tot1) / cv2.getTickFrequency()
	cv2.destroyAllWindows()
	camera.close()

	time = 1.0 # CAUSE TIME IS BROKEN RIGHT NOW
	timeCapture = 1.0 # CAUSE TIME IS COMMENTED OUT ABOVE
コード例 #16
0
ファイル: vcap.py プロジェクト: ericosur/ericosur-snippet
    def action(self):
        ''' invoking entry function '''
        cap = cv2.VideoCapture(self.video_index)
        if not cap.isOpened():
            print('ERROR: cannot open video capture device...')
            cap.release()
            return

        self.init_window()
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
        cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
        print("press 'q' to quit")
        while True:
            # Capture frame-by-frame
            ret, frame = cap.read()
            if not ret:
                break

            if self.has_skin:
                self.skin_mask(frame)

            if self.win_count == 0:
                #rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                cv2.imshow('frame', frame)

            else:
                # Our operations on the frame come here
                if self.has_gray:
                    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                    cv2.imshow('gray', gray)

                if self.has_rgb:
                    #rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    rgb = frame
                    cv2.imshow('rgb', rgb)

                if self.has_test:
                    ifrm = frame.copy()
                    e0 = cv2.getTickCount()
                    cvimg = hough_lines(ifrm)
                    e1 = cv2.getTickCount()
                    elapsed = (e1 - e0) / cv2.getTickFrequency()
                    show_fps(cvimg, elapsed)
                    #blue = self.split_blue(ifrm)
                    cv2.imshow('test', cvimg)

                if self.has_hsv:
                    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
                    cv2.imshow('hsv', hsv)


            key = cv2.waitKey(1)
            if key & 0xFF == ord('q') or key == 27:
                break

        # When everything done, release the capture
        cap.release()
        cv2.destroyAllWindows()
コード例 #17
0
ファイル: scenedetect.py プロジェクト: Butsco/skyfly
def main():
    """ Program entry point.

    Handles high-level interfacing of video and scene detection / output.
    """
    # Get command line arguments directly from the CLI parser defined above.
    args = get_cli_parser().parse_args()
    # Attempt to open the passed video file as an OpenCV VideoCapture object.
    cap = cv2.VideoCapture()
    cap.open(args.input.name)
    if not cap.isOpened():
        print 'FATAL ERROR - could not open video %s.' % args.input.name
        print 'cap.isOpened() is not True after calling cap.open(..)'
        return
    else:
        print 'Parsing video %s...' % args.input.name

    # Print video parameters (resolution, FPS, etc...)
    video_width  = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
    video_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
    video_fps    = cap.get(cv2.CAP_PROP_FPS)
    print 'Video Resolution / Framerate: %d x %d / %2.3f FPS' % (
        video_width, video_height, video_fps )

    start_time = cv2.getTickCount()  # Record the time we started processing.

    if (args.statsfile):
        # Only generate statistics, to help setting further parameters.
        generate_video_stats(cap, args.statsfile)

    else:
        # Perform threshold analysis on video, get list of fades in/out.
        fade_list = analyze_video_threshold( cap,
            args.threshold, args.minpercent, args.blocksize )

        # Get # of frames based on position of last frame we read.
        frame_count = cap.get(cv2.CAP_PROP_POS_FRAMES)

        # Compute & display number of frames, runtime, and average framerate.
        total_runtime = float(cv2.getTickCount() - start_time) / cv2.getTickFrequency()
        avg_framerate = float(frame_count) / total_runtime
        print 'Read %d frames in %4.2f seconds (avg. %4.1f FPS).' % (
            frame_count, total_runtime, avg_framerate )

        # Ensure we actually detected anything from the video file.
        if not len(fade_list) > 0:
            print 'Error - no fades detected in video!'
        else:
            # Generate list of scenes from fades, writing to CSV output if specified.      
            scene_list = generate_scene_list(cap, fade_list, args.output)   
            print 'Detected %d scenes in video.' % len(scene_list)

    # Cleanup (release all memory and close file handles).
    cap.release()
    if (args.output): args.output.close()
    if (args.statsfile): args.statsfile.close()

    print ''
コード例 #18
0
ファイル: optimize.py プロジェクト: zenki2001cn/SnippetCode
def test_medianBlur(img):
    """docstring for test_medianBlur"""
    e1 = cv2.getTickCount()

    for i in xrange(5, 49, 2):
        img = cv2.medianBlur(img, i)
        e2 = cv2.getTickCount()
        t = (e2 - e1) / cv2.getTickFrequency()
        print t
コード例 #19
0
    def send(self, obj, dest, tag):
        start = getTickCount()

        # MPI Send
        self.comm.send(obj, dest=dest, tag=tag)

        end = getTickCount()

        self.comm_times += (end - start) / getTickFrequency()
コード例 #20
0
ファイル: cam_dreams.py プロジェクト: chipgarner/CamDreams
 def __get_next_frame(self):
     delta_t = 0.0
     while delta_t < 30000000.0:
         t = cv2.getTickCount()
         self.video_capture.grab()
         delta_t = cv2.getTickCount() - t
     rt, frm = self.video_capture.retrieve()
     self.last_frame = frm
     return frm
コード例 #21
0
ファイル: tcor.py プロジェクト: y-iikura/git_python
def mclass(cls1,cls2,cls3):
    imax,jmax=cls1.shape
    cls=np.zeros(imax*jmax).reshape(imax,jmax)
    t=cv2.getTickCount()
    for i in range(imax):
        for j in range(jmax):
            cls[i,j]=cls1[i,j]+cls2[i,j]*30+cls3[i,j]*900
    print (cv2.getTickCount()-t)/cv2.getTickFrequency()
    return np.uint16(cls)
コード例 #22
0
ファイル: synchro_script.py プロジェクト: alexsusu/video-diff
def TemporalAlignment(captureQ, captureR):
    global harlocsQ, harlocsR;

    # if compute_harris == 1:...

    totalT1 = float(cv2.getTickCount());

    #if config.PREPROCESS_REFERENCE_VIDEO_ONLY == True: # This will give error in multiscale_quad_retrieval since we need to load the saved Harris features anyhow
    if True:
        # We compute and Store in files the multi-scale Harris features of the reference video
        """
        harlocsR = ComputeHarlocs(captureR, config.counterRStep, \
                            folderName="/harlocs_ref", fileNamePrefix="harloc");
        """
        harlocsR = ComputeHarlocs(captureR, config.counterRStep, \
                            folderName=config.HARRIS_REFERENCE_FOLDER_NAME, \
                            fileNamePrefix=config.HARRIS_FILENAME_PREFIX, \
                            fileNameExtension=config.HARRIS_FILENAME_EXTENSION,
                            indexVideo=1);
        if common.MY_DEBUG_STDOUT:
            common.DebugPrint("TemporalAlignment(): len(harlocsR) = %s" % str(len(harlocsR)));
            sumNbytes = 0;
            for hr in harlocsR:
                sumNbytes += hr.nbytes;
            common.DebugPrint("TemporalAlignment(): harlocsR.nbytes = %s" % str(sumNbytes));
            #common.DebugPrint("TemporalAlignment(): harlocsR.nbytes = %s" % str(harlocsR.nbytes));


    if config.PREPROCESS_REFERENCE_VIDEO_ONLY == False:
        # We compute and Store in files the multi-scale Harris features of the query video
        """
        Note: if the "harloc" files exist, load directly the features from
                the files without computing them again.
        """
        harlocsQ = ComputeHarlocs(captureQ, config.counterQStep, \
                            folderName=config.HARRIS_QUERY_FOLDER_NAME, \
                            fileNamePrefix=config.HARRIS_FILENAME_PREFIX, \
                            fileNameExtension=config.HARRIS_FILENAME_EXTENSION,
                            indexVideo=0);
	if common.MY_DEBUG_STDOUT:
            common.DebugPrint("TemporalAlignment(): len(harlocsQ) = %s" % \
                                str(len(harlocsQ)));
            sumNbytes = 0;
            for hq in harlocsQ:
                sumNbytes += hq.nbytes;
            common.DebugPrint("TemporalAlignment(): harlocsQ.nbytes = %s" % str(sumNbytes));

        #res = QuadTreeDecision(captureQ, captureR);
        res = QuadTreeDecision();
    else:
	res = None

    totalT2 = float(cv2.getTickCount());
    myTime = (totalT2 - totalT1) / cv2.getTickFrequency();
    print("TemporalAlignment() took %.6f [sec]" % (myTime));

    return res;
コード例 #23
0
    def __on_faces_present(self):
        if not self.faces:
            if self.state == 'waiting':
                self.start_time = cv2.getTickCount()
        elif cv2.getTickCount() - self.start_time > self.FACES_DELAY_TIMER:
            if self.state != 'dreaming':
                self.state = 'start_dreaming'

        self.faces = True
        self.faces_latest_time = cv2.getTickCount()
コード例 #24
0
ファイル: magic_ck.py プロジェクト: jotasvec/miOpenCv
def testPicture(background, inputPic, outputFileName = 'testPicture_out.png'):

	t1 = cv2.getTickCount()

	output = magic(inputPic,background)#, tolerance=[10,20])

	t2 = cv2.getTickCount()
	print 'testPicture processed in {0} s'.format((t2 - t1)/cv2.getTickFrequency())

	cv2.imwrite(outputFileName, output)
コード例 #25
0
    def match(self, grey1, grey2):
        word = None

        #start tracking time for detection
        e1 = cv2.getTickCount()
        kpA, descA = self.detector.detectAndCompute(grey1, word)
        kpB, descB = self.detector.detectAndCompute(grey2, word)

        e2 = cv2.getTickCount()
        time = (e2 - e1)/ cv2.getTickFrequency()
        return self.bf_matching(kpA, descA, kpB, descB, time)
コード例 #26
0
ファイル: GUI.py プロジェクト: jabreu4/TakeHome2
def medianFilter():
    e1 = cv2.getTickCount()
    source = cv2.imread(imagePath)
    final = cv2.medianBlur(source, 9)
    e2 = cv2.getTickCount()
    time = (e2 - e1)/ cv2.getTickFrequency() + (numberThreads) + numberThreadsPerCore + numberCores
    msgbox(msg= str(time) +" seconds", title="Execution Time", ok_button="OK")
    cv2.imshow('Original Picture', source) #Show the image
    cv2.imshow('Median Filtered Image', final) #Show the image
    cv2.waitKey()
    cv2.destroyAllWindows()
コード例 #27
0
    def update(self, DEBUG=False, ShowPerformance=False):
        def distance(pixel):
            return 84134.5 - 0.0390032 * pixel - 53553.8 * np.arctan(pixel ** 2)

        def drawReferenceLines():
            # 90cm
            cv2.line(outputImg, (0, 26), (w, 26), (255))
            # 60cm
            cv2.line(outputImg, (0, 33), (w, 33), (180))
            # 30cm
            cv2.line(outputImg, (0, 55), (w, 55), (128))

        def drawLine(row, column):
            cv2.line(outputImg, (column, row), (column, h), (255))

        last = cv2.getTickCount()

        while True:
            image = q.get()

            if image is None:
                time.sleep(0.1)
                continue

            grayImg = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            outputImg = cv2.threshold(grayImg, 160, 255, cv2.THRESH_BINARY)[1]

            values = []
            for columnIndex in range(0, w, 2):
                column = outputImg[:, columnIndex]
                row = np.nonzero(column)[0]

                if not row.size == 0:
                    values.append((columnIndex, distance(row[0])))

                    if DEBUG:
                        drawLine(row[0], columnIndex)

                else:
                    values.append((columnIndex, 300))

            self.values = values
            if DEBUG:
                drawReferenceLines()

                cv2.imshow("image", grayImg)
                cv2.imshow('outputImg', outputImg)
                cv2.waitKey(1)

            if ShowPerformance:
                timeSpend = cv2.getTickCount() - last
                last = cv2.getTickCount()
                timeSec = timeSpend / cv2.getTickFrequency()
                print(timeSec, 1 / timeSec)
コード例 #28
0
ファイル: task_2.py プロジェクト: Esenin/CV_tasks
def main():
    img = open_image('../text.bmp')
    e1 = cv2.getTickCount()

    img = perform_changes_task2(img)

    e2 = cv2.getTickCount()
    time = (e2 - e1) / cv2.getTickFrequency()

    show_image(img)
    print "time elapsed: ", time
    wait_exit()
コード例 #29
0
ファイル: task_3.py プロジェクト: Esenin/CV_tasks
def main():
    img = open_image('../text.bmp')
    e1 = cv2.getTickCount()

    img, orig = filter_words(img)

    e2 = cv2.getTickCount()
    time = (e2 - e1) / cv2.getTickFrequency()

    show_image(img, orig)
    print "time elapsed: ", time
    wait_exit()
def main():
    img1 = cv2.imread('1.jpg')
    e1 = cv2.getTickCount()
    t1 = time.time()
    for i in range(5, 49, 2):
        img1 = cv2.medianBlur(img1, i)
    # your code execution
    e2 = cv2.getTickCount()
    t2 = time.time()
    diff_e = (e2 - e1) / cv2.getTickFrequency()
    print(diff_e)
    print(t2 - t1)
コード例 #31
0
        # if video file successfully open then read frame from video

        if (cap.isOpened):
            ret, frame = cap.read()

            # rescale if specified

            if (args.rescale != 1.0):
                frame = cv2.resize(frame, (0, 0),
                                   fx=args.rescale,
                                   fy=args.rescale)

        # start a timer (to see how long processing and display takes)

        start_t = cv2.getTickCount()

        # get parameters from track bars

        s_lower = cv2.getTrackbarPos("s lower", windowName2)
        s_upper = cv2.getTrackbarPos("s upper", windowName2)
        v_lower = cv2.getTrackbarPos("v lower", windowName2)
        v_upper = cv2.getTrackbarPos("v upper", windowName2)

        # select region using the mouse and display it

        if (len(boxes) > 1) and (boxes[0][1] < boxes[1][1]) and (boxes[0][0] <
                                                                 boxes[1][0]):
            crop = frame[boxes[0][1]:boxes[1][1],
                         boxes[0][0]:boxes[1][0]].copy()
コード例 #32
0
def detect_objects(image_np, sess, detection_graph, image, depth, point_cloud,
                   category_index):
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
    image_np_expanded = np.expand_dims(image_np, axis=0)
    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

    # Each box represents a part of the image where a particular object was detected.
    boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

    # Each score represent how level of confidence for each of the objects.
    # Score is shown on the result image, together with the class label.
    scores = detection_graph.get_tensor_by_name('detection_scores:0')
    classes = detection_graph.get_tensor_by_name('detection_classes:0')
    num_detections = detection_graph.get_tensor_by_name('num_detections:0')

    t1 = cv2.getTickCount()
    # Actual detection.
    out = sess.run([boxes, scores, classes, num_detections],
                   feed_dict={image_tensor: image_np_expanded})

    (boxes, scores, classes, num_detections) = out

    centerx = 0
    centery = 0
    key = ''
    rows = image_np.shape[0]
    cols = image_np.shape[1]
    num_detections = int(num_detections)

    for i in range(num_detections):
        classId = (out[2][0][i])
        score = float(out[1][0][i])
        bbox = [float(v) for v in out[0][0][i]]
        if score > 0.3:
            x = bbox[1] * cols
            y = bbox[0] * rows
            right = bbox[3] * cols
            bottom = bbox[2] * rows
            #cv2.rectangle(img, (int(x), int(y)), (int(right), int(bottom)), (125, 255, 51), thickness=1)
            cv2.circle(image_np, (int((x + right) / 2), int((y + bottom) / 2)),
                       8, (125, 155, 21),
                       thickness=1)
            centerx = int((x + right) / 2)
            centery = int((y + bottom) / 2)

            # Get and print distance value in mm at the center of the object
            # We measure the distance camera - object using Euclidean distance

            err, point_cloud_value = point_cloud.get_value(centerx, centery)

            distance = math.sqrt(point_cloud_value[0] * point_cloud_value[0] +
                                 point_cloud_value[1] * point_cloud_value[1] +
                                 point_cloud_value[2] * point_cloud_value[2])

            if not np.isnan(distance) and not np.isinf(distance):
                distance = round(distance)
                #print("object {0} Distance to Camera at ({1}, {2}): {3} mm\n".format(i,x, y, distance))
                classes = np.squeeze(classes).astype(np.int32)
                if classes[i] in category_index.keys():
                    class_name = category_index[classes[i]]['name']
                else:
                    class_name = 'N/A'
                display_str = str(class_name)
                cv2.putText(image_np,
                            "{0}:{1} mm".format(display_str, distance),
                            (int(centerx), int(centery)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1, (125, 155, 21),
                            thickness=2,
                            lineType=2)

                # Increment the loop

            else:
                print(
                    "Can't estimate distance at this position, move the camera\n"
                )
            sys.stdout.flush()

    t2 = cv2.getTickCount()
    print((t2 - t1) / cv2.getTickFrequency())
    return image_np
コード例 #33
0
def main():
    model_name = 'siamRPN'

    snapshot_path = os.path.join(project_path_, 'experiments/%s/model.pth' % args.tracker_name)
    config_path = os.path.join(project_path_, 'experiments/%s/config.yaml' % args.tracker_name)
    cfg.merge_from_file(config_path)

    # create model
    model = ModelBuilder()  # a model is a Neural Network.(a torch.nn.Module)

    # load model
    model = load_pretrain(model, snapshot_path).cuda().eval()

    # build tracker
    tracker = build_tracker(model)  # a tracker is a object consisting of not only a NN and some post-processing

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset, dataset_root=dataset_root_, load_img=False)

    total_lost = 0
    if args.dataset in ['VOT2016', 'VOT2018', 'VOT2019']:
        # restart tracking
        for v_idx, video in enumerate(dataset):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            frame_counter = 0
            lost_number = 0
            toc = 0
            pred_bboxes = []
            for idx, (img, gt_bbox) in enumerate(video):
                if len(gt_bbox) == 4:
                    gt_bbox = [gt_bbox[0], gt_bbox[1],
                       gt_bbox[0], gt_bbox[1]+gt_bbox[3]-1,
                       gt_bbox[0]+gt_bbox[2]-1, gt_bbox[1]+gt_bbox[3]-1,
                       gt_bbox[0]+gt_bbox[2]-1, gt_bbox[1]]
                tic = cv2.getTickCount()
                if idx == frame_counter:
                    H,W,_ = img.shape
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx-(w-1)/2, cy-(h-1)/2, w, h]
                    tracker.init(img, gt_bbox_)

                    pred_bbox = gt_bbox_
                    pred_bboxes.append(1)
                elif idx > frame_counter:
                    outputs = tracker.track(img)
                    pred_bbox = outputs['bbox']
                    overlap = vot_overlap(pred_bbox, gt_bbox, (img.shape[1], img.shape[0]))
                    if overlap > 0:
                        # not lost
                        pred_bboxes.append(pred_bbox)
                    else:
                        # lost object
                        pred_bboxes.append(2)
                        frame_counter = idx + 5 # skip 5 frames
                        lost_number += 1
                else:
                    pred_bboxes.append(0)
                toc += cv2.getTickCount() - tic
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > frame_counter:
                    cv2.polylines(img, [np.array(gt_bbox, np.int).reshape((-1, 1, 2))],
                            True, (0, 255, 0), 3)
                    bbox = list(map(int, pred_bbox))
                    cv2.rectangle(img, (bbox[0], bbox[1]),
                                  (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 255), 3)
                    cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.putText(img, str(lost_number), (40, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
                    cv2.imshow(video.name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()
            # save results
            video_path = os.path.join(save_dir, args.dataset, model_name,
                    'baseline', video.name)
            if not os.path.isdir(video_path):
                os.makedirs(video_path)
            result_path = os.path.join(video_path, '{}_001.txt'.format(video.name))
            with open(result_path, 'w') as f:
                for x in pred_bboxes:
                    if isinstance(x, int):
                        f.write("{:d}\n".format(x))
                    else:
                        f.write(','.join([vot_float2str("%.4f", i) for i in x])+'\n')
            print('({:3d}) Video: {:12s} Time: {:4.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
                    v_idx+1, video.name, toc, idx / toc, lost_number))
コード例 #34
0
ファイル: test_siamrpn.py プロジェクト: zlou/SiamDW
def track(tracker, net, video, args):
    start_frame, lost_times, toc = 0, 0, 0

    # save result to evaluate
    if args.epoch_test:
        suffix = args.resume.split('/')[-1]
        suffix = suffix.split('.')[0]
        tracker_path = os.path.join('result', args.dataset, args.arch + suffix)
    else:
        tracker_path = os.path.join('result', args.dataset, args.arch)

    if not os.path.exists(tracker_path):
        os.makedirs(tracker_path)

    if 'VOT' in args.dataset:
        baseline_path = join(tracker_path, 'baseline')
        video_path = join(baseline_path, video['name'])
        if not os.path.exists(video_path):
            os.makedirs(video_path)
        result_path = join(video_path, video['name'] + '_001.txt')
    else:
        result_path = join(tracker_path, '{:s}.txt'.format(video['name']))

    if os.path.exists(result_path):
        return 0  # for mult-gputesting

    regions = []  # result and states[1 init / 2 lost / 0 skip]
    image_files, gt = video['image_files'], video['gt']
    for f, image_file in enumerate(image_files):
        im = cv2.imread(image_file)
        if len(im.shape) == 2:
            im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)

        tic = cv2.getTickCount()

        if f == start_frame:  # init
            cx, cy, w, h = get_axis_aligned_bbox(gt[f])
            target_pos = np.array([cx, cy])
            target_sz = np.array([w, h])
            state = tracker.init(im, target_pos, target_sz,
                                 net)  # init tracker
            regions.append(1 if 'VOT' in args.dataset else gt[f])
        elif f > start_frame:  # tracking
            state = tracker.track(state, im)  # track
            location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
            b_overlap = poly_iou(gt[f],
                                 location) if 'VOT' in args.dataset else 1
            if b_overlap > 0:
                regions.append(location)
            else:
                regions.append(2)
                lost_times += 1
                start_frame = f + 5  # skip 5 frames
        else:  # skip
            regions.append(0)
        toc += cv2.getTickCount() - tic
    toc /= cv2.getTickFrequency()

    with open(result_path, "w") as fin:
        if 'VOT' in args.dataset:
            for x in regions:
                if isinstance(x, int):
                    fin.write("{:d}\n".format(x))
                else:
                    p_bbox = x.copy()
                    fin.write(','.join([str(i) for i in p_bbox]) + '\n')
        else:
            for x in regions:
                p_bbox = x.copy()
                fin.write(','.join([
                    str(i + 1) if idx == 0 or idx == 1 else str(i)
                    for idx, i in enumerate(p_bbox)
                ]) + '\n')

    print('Video: {:12s} Time: {:2.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
        video['name'], toc, f / toc, lost_times))

    return lost_times
コード例 #35
0
cap = cv2.VideoCapture(1)
# TRACKER INITIALIZATION
success, frame = cap.read()
bbox = cv2.selectROI("Tracking",frame, False)
tracker.init(frame, bbox)


def drawBox(img,bbox):
    x, y, w, h = int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])
    cv2.rectangle(img, (x, y), ((x + w), (y + h)), (255, 0, 255), 3, 3 )
    cv2.putText(img, "Tracking", (100, 75), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)


while True:

    timer = cv2.getTickCount()
    success, img = cap.read()
    success, bbox = tracker.update(img)

    if success:
        drawBox(img,bbox)
    else:
        cv2.putText(img, "Lost", (100, 75), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

    cv2.rectangle(img,(15,15),(200,90),(255,0,255),2)
    cv2.putText(img, "Fps:", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,0,255), 2);
    cv2.putText(img, "Status:", (20, 75), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2);


    fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);
    if fps>60: myColor = (20,230,20)
コード例 #36
0
    def count(self, frame):
        _timer = cv2.getTickCount(
        )  # set timer to calculate processing frame rate

        self.frame = frame

        for _id, blob in list(self.blobs.items()):
            # update trackers
            success, box = blob.tracker.update(self.frame)
            if success:
                blob.num_consecutive_tracking_failures = 0
                blob.update(box)
                logger.debug('Vehicle tracker updated.',
                             extra={
                                 'meta': {
                                     'cat': 'TRACKER_UPDATE',
                                     'vehicle_id': _id,
                                     'bounding_box': blob.bounding_box,
                                     'centroid': blob.centroid,
                                 },
                             })
            else:
                blob.num_consecutive_tracking_failures += 1

            # count vehicles that have left the frame if no counting line exists
            # or those that have passed the counting line if one exists
            if (self.counting_line == None and \
                    (blob.num_consecutive_tracking_failures == self.mctf or blob.num_consecutive_detection_failures == self.mcdf) and \
                    not blob.counted) \
                        or \
                    (self.counting_line != None and \
                    # don't count a blob if it was first detected at a position past the counting line
                    # this enforces counting in only one direction


                    not is_passed_counting_line(blob.position_first_detected, self.counting_line, self.cl_position) and \
                    is_passed_counting_line(blob.centroid, self.counting_line, self.cl_position) and \
                    not blob.counted):
                blob.counted = True
                self.vehicle_count += 1
                # count by vehicle type
                if blob.type != None:
                    if blob.type in self.types_counts:
                        self.types_counts[blob.type] += 1
                    else:
                        self.types_counts[blob.type] = 1
                logger.info('Vehicle counted.',
                            extra={
                                'meta': {
                                    'cat': 'VEHICLE_COUNT',
                                    'id': _id,
                                    'type': blob.type,
                                    'count': self.vehicle_count,
                                    'position_first_detected':
                                    blob.position_first_detected,
                                    'position_counted': blob.centroid,
                                    'counted_at': time.time(),
                                },
                            })

            if blob.num_consecutive_tracking_failures >= self.mctf:
                # delete untracked blobs
                del self.blobs[_id]

        if self.frame_count >= self.di:
            # rerun detection
            droi_frame = get_roi_frame(self.frame, self.droi)
            _bounding_boxes, _classes, _confidences = get_bounding_boxes(
                droi_frame, self.detector)
            self.blobs = add_new_blobs(_bounding_boxes, _classes, _confidences,
                                       self.blobs, self.frame, self.tracker,
                                       self.counting_line, self.cl_position,
                                       self.mcdf)
            self.blobs = remove_duplicates(self.blobs)
            self.frame_count = 0

        self.frame_count += 1

        self.processing_frame_rate = round(
            cv2.getTickFrequency() / (cv2.getTickCount() - _timer), 2)
        logger.debug('Processing frame rate updated.',
                     extra={
                         'meta': {
                             'cat': 'PROCESSING_SPEED',
                             'frame_rate': self.processing_frame_rate
                         },
                     })
コード例 #37
0
ファイル: hp_search.py プロジェクト: yangkai12/SiamCorners
def run_tracker(tracker, img, gt, video_name, restart=True):
    frame_counter = 0
    lost_number = 0
    toc = 0
    pred_bboxes = []
    if restart:  # VOT2016 and VOT 2018
        for idx, (img, gt_bbox) in enumerate(video):
            if len(gt_bbox) == 4:
                gt_bbox = [
                    gt_bbox[0], gt_bbox[1], gt_bbox[0],
                    gt_bbox[1] + gt_bbox[3] - 1, gt_bbox[0] + gt_bbox[2] - 1,
                    gt_bbox[1] + gt_bbox[3] - 1, gt_bbox[0] + gt_bbox[2] - 1,
                    gt_bbox[1]
                ]
            tic = cv2.getTickCount()
            if idx == frame_counter:
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                tracker.init(img, gt_bbox_)
                pred_bbox = gt_bbox_
                pred_bboxes.append(1)
            elif idx > frame_counter:
                outputs = tracker.track(img)
                pred_bbox = outputs['bbox']
                overlap = vot_overlap(pred_bbox, gt_bbox,
                                      (img.shape[1], img.shape[0]))
                if overlap > 0:
                    # not lost
                    pred_bboxes.append(pred_bbox)
                else:
                    # lost object
                    pred_bboxes.append(2)
                    frame_counter = idx + 5  # skip 5 frames
                    lost_number += 1
            else:
                pred_bboxes.append(0)
            toc += cv2.getTickCount() - tic
        toc /= cv2.getTickFrequency()
        print(
            'Video: {:12s} Time: {:4.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
                video_name, toc, idx / toc, lost_number))
        return pred_bboxes
    else:
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        for idx, (img, gt_bbox) in enumerate(video):
            tic = cv2.getTickCount()
            if idx == 0:
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                tracker.init(img, gt_bbox_)
                pred_bbox = gt_bbox_
                scores.append(None)
                pred_bboxes.append(pred_bbox)
            else:
                outputs = tracker.track(img)
                pred_bbox = outputs['bbox']
                pred_bboxes.append(pred_bbox)
                scores.append(outputs['best_score'])
            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
        toc /= cv2.getTickFrequency()
        print('Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            video_name, toc, idx / toc))
        return pred_bboxes, scores, track_times
コード例 #38
0
import numpy as np
import cv2

from matplotlib import pyplot as plt

#Lecture image en niveau de gris et conversion en float64
img = np.float64(cv2.imread('../Image_Pairs/FlowerGarden2.png', 0))
(h, w) = img.shape
print("Dimension de l'image :", h, "lignes x", w, "colonnes")

#Méthode directe
t1 = cv2.getTickCount()
img2 = cv2.copyMakeBorder(img, 0, 0, 0, 0, cv2.BORDER_REPLICATE)
for y in range(1, h - 1):
    for x in range(1, w - 1):
        val = 5 * img[y, x] - img[y - 1,
                                  x] - img[y, x - 1] - img[y + 1,
                                                           x] - img[y, x + 1]
        img2[y, x] = min(max(val, 0), 255)
t2 = cv2.getTickCount()
time = (t2 - t1) / cv2.getTickFrequency()
print("Méthode directe :", time, "s")

plt.subplot(121)
plt.imshow(img2, cmap='gray')
plt.title('Convolution - Méthode Directe')

#Méthode filter2D
t1 = cv2.getTickCount()
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
img3 = cv2.filter2D(img, -1, kernel)
コード例 #39
0
def main():
    # Create the in-memory stream
    stream = io.BytesIO()

    # Create a window
    cv2.namedWindow(WINDOW_DISPLAY_IMAGE)
    # position the window
    cv2.moveWindow(WINDOW_DISPLAY_IMAGE, 0, 35)

    # Add some controls to the window
    cv2.createTrackbar(CONTROL_SCAN_RADIUS, WINDOW_DISPLAY_IMAGE, 5, 50,
                       onScanRadiusChange)
    cv2.setTrackbarPos(CONTROL_SCAN_RADIUS, WINDOW_DISPLAY_IMAGE,
                       SCAN_RADIUS_REG)

    cv2.createTrackbar(CONTROL_NUMBER_OF_CIRCLES, WINDOW_DISPLAY_IMAGE, 0, 7,
                       onCircleScanChange)
    cv2.setTrackbarPos(CONTROL_NUMBER_OF_CIRCLES, WINDOW_DISPLAY_IMAGE,
                       NUMBER_OF_CIRCLES)

    cv2.createTrackbar(CONTROL_LINE_WIDTH, WINDOW_DISPLAY_IMAGE, 0,
                       RESOLUTION_X, onLineWidthChange)
    cv2.setTrackbarPos(CONTROL_LINE_WIDTH, WINDOW_DISPLAY_IMAGE,
                       SCAN_RADIUS * 2)

    returnString = """
Press Esc to end the program
Using camera resolution: {}x{}
Centre point: {}:{}
Scan radius: {}
Number of search itterations: {}
Baseline Width: {}
""".format(RESOLUTION_X, RESOLUTION_Y, SCAN_POS_X, SCAN_HEIGHT,
           SCAN_RADIUS_REG, NUMBER_OF_CIRCLES, SCAN_RADIUS * 2)

    print(returnString)

    # Open connection to camera
    with picamera.PiCamera() as camera:
        # Set camera resolution
        camera.resolution = (RESOLUTION_X, RESOLUTION_Y)

        # Start loop
        while True:
            # Get the tick count so we can keep track of performance
            e1 = cv2.getTickCount()

            # Capture image from camera
            camera.capture(stream, format='jpeg', use_video_port=True)

            # Convert image from camera to a numpy array
            data = np.fromstring(stream.getvalue(), dtype=np.uint8)

            # Decode the numpy array image
            image = cv2.imdecode(data, cv2.CV_LOAD_IMAGE_COLOR)

            # Empty and return the in-memory stream to beginning
            stream.seek(0)
            stream.truncate(0)

            # Create other images
            grey_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
            display_image = cv2.copyMakeBorder(image, 0, 0, 0, 0,
                                               cv2.BORDER_REPLICATE)

            center_point = (SCAN_POS_X, SCAN_HEIGHT)

            # San a horizontal line based on the centre point
            # We could just use this data to work out how far off centre we are and steer accordingly.
            # Get a data array of all the falues along that line
            # scan_data is an array containing:
            #   - pixel value
            scan_data = scanLine(grey_image, display_image, center_point,
                                 SCAN_RADIUS)
            # The center point we believe the line we are following intersects with our scan line.
            point_on_line = findLine(display_image, scan_data, SCAN_POS_X,
                                     SCAN_HEIGHT, SCAN_RADIUS)

            # Start scanning the arcs
            # This allows us to look ahead further ahead at the line and work out an angle to steer
            # From the intersection point of the line, scan in an arc to find the line
            # The scan data contains an array
            #   - pixel value
            #   - x co-ordinate
            #   - y co-ordinate
            returnVal, scan_data = scanCircle(grey_image, display_image,
                                              point_on_line, SCAN_RADIUS_REG,
                                              -90)
            previous_point = point_on_line
            # in the same way ads the findLine, go through the data, find the mid point and return the co-ordinates.
            last_point = findInCircle(display_image, scan_data)
            cv2.line(display_image, (previous_point[0], previous_point[1]),
                     (last_point[0], last_point[1]), (255, 255, 255), 1)

            actual_number_of_circles = 0
            for scan_count in range(0, NUMBER_OF_CIRCLES):
                returnVal, scan_data = scanCircle(
                    grey_image, display_image, last_point, SCAN_RADIUS_REG,
                    lineAngle(previous_point, last_point))

                # Only work out the next itteration if our point is within the bounds of the image
                if returnVal == True:
                    actual_number_of_circles += 1
                    previous_point = last_point
                    last_point = findInCircle(display_image, scan_data)
                    cv2.line(display_image,
                             (previous_point[0], previous_point[1]),
                             (last_point[0], last_point[1]), (255, 255, 255),
                             1)
                else:
                    break

            # Draw a line from the centre point to the end point where we last found the line we are following
            cv2.line(display_image, (center_point[0], center_point[1]),
                     (last_point[0], last_point[1]), (0, 0, 255), 1)

            # Display the image
            cv2.imshow(WINDOW_DISPLAY_IMAGE, display_image)

            # This is the maximum distance the end point of our search for a line can be from the centre point.
            line_scan_length = SCAN_RADIUS_REG * (actual_number_of_circles + 1)
            # This is the measured line length from the centre point
            line_length_from_center = lineLength(center_point, last_point)
            center_y_distance = center_point[1] - last_point[1]
            center_x_distance = center_point[0] - last_point[0]

            # Stop counting all work is done at this point and calculate how we are doing.
            e2 = cv2.getTickCount()

            returnString = "fps {} - bearing {} - x:{} y:{} look distance:{} distance from origin:{}".format(
                1000 / ((e2 - e1) / cv2.getTickFrequency() * 1000),
                lineAngle(center_point, last_point) * -1 - 90,
                center_x_distance, center_y_distance, line_scan_length,
                line_length_from_center)
            print(returnString)

            # Wait for ESC to end program
            c = cv2.waitKey(7) % 0x100
            if c == 27:
                break
    print "Closing program"
    cv2.destroyAllWindows()
    print "All windows should be closed"
    return
コード例 #40
0
ファイル: common.py プロジェクト: wn1980/rbx2
def clock():
    return cv2.getTickCount() / cv2.getTickFrequency()
コード例 #41
0
 def _infer(self, prep_img):
     t0 = cv2.getTickCount()
     output = self._exec_model.infer(inputs={self._input_layer_name: prep_img})
     self.infer_time = (cv2.getTickCount() - t0) / cv2.getTickFrequency()
     return output
コード例 #42
0
def calibrate_stereo_cameras(res_x=img_width, res_y=img_height):
    # We need a lot of variables to calibrate the stereo camera
    """
    Based on code from:
    https://gist.github.com/aarmea/629e59ac7b640a60340145809b1c9013
    """
    processing_time01 = cv2.getTickCount()
    objectPoints = None

    rightImagePoints = None
    rightCameraMatrix = None
    rightDistortionCoefficients = None

    leftImagePoints = None
    leftCameraMatrix = None
    leftDistortionCoefficients = None

    rotationMatrix = None
    translationVector = None

    imageSize = (res_x, res_y)

    TERMINATION_CRITERIA = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
                            30, 0.01)
    OPTIMIZE_ALPHA = 0.25

    try:
        npz_file = np.load(
            './calibration_data/{}p/stereo_camera_calibration.npz'.format(
                res_y))
    except:
        pass

    for cam_num in [0, 1]:
        right_or_left = ["_right" if cam_num == 1 else "_left"][0]

        try:
            print('./calibration_data/{}p/camera_calibration{}.npz'.format(
                res_y, right_or_left))
            npz_file = np.load(
                './calibration_data/{}p/camera_calibration{}.npz'.format(
                    res_y, right_or_left))

            list_of_vars = [
                'map1', 'map2', 'objpoints', 'imgpoints', 'camera_matrix',
                'distortion_coeff'
            ]
            print(sorted(npz_file.files))

            if sorted(list_of_vars) == sorted(npz_file.files):
                print("Camera calibration data has been found in cache.")
                map1 = npz_file['map1']
                map2 = npz_file['map2']
                objectPoints = npz_file['objpoints']
                if right_or_left == "_right":
                    rightImagePoints = npz_file['imgpoints']
                    rightCameraMatrix = npz_file['camera_matrix']
                    rightDistortionCoefficients = npz_file['distortion_coeff']
                if right_or_left == "_left":
                    leftImagePoints = npz_file['imgpoints']
                    leftCameraMatrix = npz_file['camera_matrix']
                    leftDistortionCoefficients = npz_file['distortion_coeff']
            else:
                print("Camera data file found but data corrupted.")
        except:
            #If the file doesn't exist
            print("Camera calibration data not found in cache.")
            return False

    print("Calibrating cameras together...")

    leftImagePoints = np.asarray(leftImagePoints, dtype=np.float64)
    rightImagePoints = np.asarray(rightImagePoints, dtype=np.float64)

    # Stereo calibration
    (RMS, _, _, _, _, rotationMatrix,
     translationVector) = cv2.fisheye.stereoCalibrate(
         objectPoints, leftImagePoints, rightImagePoints, leftCameraMatrix,
         leftDistortionCoefficients, rightCameraMatrix,
         rightDistortionCoefficients, imageSize, None, None,
         cv2.CALIB_FIX_INTRINSIC, TERMINATION_CRITERIA)
    # Print RMS result (for calibration quality estimation)
    print("<><><><><><><><><><><><><><><><><><><><>")
    print("<><>   RMS is ", RMS, " <><>")
    print("<><><><><><><><><><><><><><><><><><><><>")
    print("Rectifying cameras...")
    R1 = np.zeros([3, 3])
    R2 = np.zeros([3, 3])
    P1 = np.zeros([3, 4])
    P2 = np.zeros([3, 4])
    Q = np.zeros([4, 4])

    # Rectify calibration results
    (leftRectification, rightRectification, leftProjection, rightProjection,
     dispartityToDepthMap) = cv2.fisheye.stereoRectify(
         leftCameraMatrix, leftDistortionCoefficients, rightCameraMatrix,
         rightDistortionCoefficients, imageSize, rotationMatrix,
         translationVector, 0, R2, P1, P2, Q, cv2.CALIB_ZERO_DISPARITY, (0, 0),
         0, 0)

    # Saving calibration results for the future use
    print("Saving calibration...")
    leftMapX, leftMapY = cv2.fisheye.initUndistortRectifyMap(
        leftCameraMatrix, leftDistortionCoefficients, leftRectification,
        leftProjection, imageSize, cv2.CV_16SC2)
    rightMapX, rightMapY = cv2.fisheye.initUndistortRectifyMap(
        rightCameraMatrix, rightDistortionCoefficients, rightRectification,
        rightProjection, imageSize, cv2.CV_16SC2)

    np.savez_compressed(
        './calibration_data/{}p/stereo_camera_calibration.npz'.format(res_y),
        imageSize=imageSize,
        leftMapX=leftMapX,
        leftMapY=leftMapY,
        rightMapX=rightMapX,
        rightMapY=rightMapY,
        dispartityToDepthMap=dispartityToDepthMap)
    return True
コード例 #43
0
    def run(self):
        # Capture, process, display loop
        while True:
            # Read a new frame
            ok, self.frame = self.video.read()
            w, h, ch = self.frame.shape
            self.frame = cv2.resize(self.frame, (int(h/2), int(w/2)), interpolation=cv2.INTER_NEAREST)
            display = self.frame.copy() # Frame we'll do all the graphical drawing to
            data_display = np.zeros_like(display, dtype=np.uint8) # Black screen to display data
            if not ok:
                break

            # Start FPS timer
            timer = cv2.getTickCount()

            if self.bg is None:
                cv2.putText(display,
                            "Press 'r' to reset the foreground extraction.",
                            self.positions['hand_pose'],
                            cv2.FONT_HERSHEY_SIMPLEX,
                            0.75, (0, 127, 64), 2)
                cv2.imshow("display", display)

                k = cv2.waitKey(1) & 0xff
                if k == 27: break # ESC pressed
                elif k == 114 or k == 108:
                    # r pressed
                    self.bg = self.frame.copy()
                    self.hand_bbox = (116, 116, 170, 170)
                    self.is_tracking = False
            else:
                # Extract the foreground
                foreground, mask = self.extract_foreground()
                foreground_display = foreground.copy()

                # Get hand from mask using the bounding box
                hand_crop = mask[int(self.hand_bbox[1]):int(self.hand_bbox[1]+self.hand_bbox[3]),
                                 int(self.hand_bbox[0]):int(self.hand_bbox[0]+self.hand_bbox[2])]

                # Update tracker
                if self.is_tracking:
                    tracking, self.hand_bbox = self.tracker.update(foreground)

                try:
                    # Resize cropped hand and make prediction on gesture
                    hand_crop_resized = np.expand_dims(cv2.resize(hand_crop, (54, 54)), axis=0).reshape((1, 54, 54, 1))
                    prediction = self.recognizer.predict(hand_crop_resized)
                    predi = prediction[0].argmax() # Get the index of the greatest confidence
                    gesture = self.CLASSES[predi]

                    for i, pred in enumerate(prediction[0]):
                        # Draw confidence bar for each gesture
                        barx = self.positions['hand_pose'][0]
                        bary = 60 + i*60
                        bar_height = 20
                        bar_length = int(400 * pred) + barx # calculate length of confidence bar

                        # Make the most confidence prediction green
                        if i == predi:
                            colour = (0, 255, 0)
                        else:
                            colour = (0, 0, 255)

                        cv2.putText(data_display,
                                    "{}: {}".format(self.CLASSES[i], pred),
                                    (self.positions['hand_pose'][0], 30 + i*60),
                                    cv2.FONT_HERSHEY_SIMPLEX,
                                    0.75, (255, 255, 255), 2)
                        cv2.rectangle(data_display,
                                      (barx, bary),
                                      (bar_length,
                                      bary - bar_height),
                                      colour,
                                      -1, 1)

                    cv2.putText(display,
                                "hand pose: {}".format(gesture),
                                self.positions['hand_pose'],
                                cv2.FONT_HERSHEY_SIMPLEX,
                                0.75, (0, 0, 255), 2)
                    cv2.putText(foreground_display,
                                "hand pose: {}".format(gesture),
                                self.positions['hand_pose'],
                                cv2.FONT_HERSHEY_SIMPLEX,
                                0.75, (0, 0, 255), 2)
                except Exception as ex:
                    cv2.putText(display,
                                "hand pose: error",
                                self.positions['hand_pose'],
                                cv2.FONT_HERSHEY_SIMPLEX,
                                0.75, (0, 0, 255), 2)
                    cv2.putText(foreground_display,
                                "hand pose: error",
                                self.positions['hand_pose'],
                                cv2.FONT_HERSHEY_SIMPLEX,
                                0.75, (0, 0, 255), 2)

                # Draw bounding box
                p1 = (int(self.hand_bbox[0]), int(self.hand_bbox[1]))
                p2 = (int(self.hand_bbox[0] + self.hand_bbox[2]), int(self.hand_bbox[1] + self.hand_bbox[3]))
                cv2.rectangle(foreground_display, p1, p2, (255, 0, 0), 2, 1)
                cv2.rectangle(display, p1, p2, (255, 0, 0), 2, 1)

                # Calculate difference in hand position
                hand_pos = ((p1[0] + p2[0])//2, (p1[1] + p2[1])//2)
                mouse_change = ((p1[0] + p2[0])//2 - self.positions['null_pos'][0], self.positions['null_pos'][0] - (p1[1] + p2[1])//2)

                # Draw hand moved difference
                cv2.circle(display, self.positions['null_pos'], 5, (0,0,255), -1)
                cv2.circle(display, hand_pos, 5, (0,255,0), -1)
                cv2.line(display, self.positions['null_pos'], hand_pos, (255,0,0),5)

                # Calculate Frames per second (FPS)
                fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer)

                # Display FPS on frame
                cv2.putText(foreground_display, "FPS : " + str(int(fps)), self.positions['fps'], cv2.FONT_HERSHEY_SIMPLEX, 0.65, (50, 170, 50), 2)
                cv2.putText(display, "FPS : " + str(int(fps)), self.positions['fps'], cv2.FONT_HERSHEY_SIMPLEX, 0.65, (50, 170, 50), 2)

                # Display pause command text
                cv2.putText(foreground_display,
                            "hold 'r' to recalibrate until the screen is black",
                            (15, 400),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            0.65, (0, 0, 255), 2)
                cv2.putText(foreground_display,
                            "to recalibrate",
                            (15, 420),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            0.65, (0, 0, 255), 2)
                cv2.putText(foreground_display,
                            "press 'p' to return to paused state",
                            (15, 450),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            0.65, (0, 0, 255), 2)

                # Display foreground_display
                cv2.imshow("foreground_display", foreground_display)
                cv2.imshow("display", display)
                cv2.imshow("hand_crop", hand_crop)
                # Display result
                cv2.imshow("data", data_display)

                k = cv2.waitKey(1) & 0xff
                if k == 27: break # ESC pressed
                elif k == 114 or k == 108: # r pressed
                    self.bg = self.frame.copy()
                    self.hand_bbox = (116, 116, 170, 170)
                    self.is_tracking = False
                elif k == 116: # t pressed
                    # Initialize tracker with first frame and bounding box
                    self.is_tracking = True
                    self.tracker = cv2.TrackerKCF_create()
                    self.tracker.init(self.frame, self.hand_bbox)
                elif k == 112: # p pressed
                    # Reset to paused state
                    self.is_tracking = False
                    self.bg = None
                    cv2.destroyAllWindows()
                elif k != 255: print(k)
コード例 #44
0
    desc = stack_array([img_data.bow_descriptors for img_data in imgs_data])
    desc = np.float32(desc)

    # clustering
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
                params.BOW_clustering_iterations, 0.01)
    flags = cv2.KMEANS_PP_CENTERS

    compactness, labels, dictionary = cv2.kmeans(desc, dictionary_size, None,
                                                 criteria, 1, flags)
    np.save(params.BOW_DICT_PATH, dictionary)

    return dictionary


program_start = cv2.getTickCount()
# get training set
print("Loading images...")
start = cv2.getTickCount()

# must specify data path names in same order as class names
paths = [params.DATA_training_path_neg, params.DATA_training_path_pos]
# get class names
class_names = [
    get_class_name(class_number)
    for class_number in range(len(params.DATA_CLASS_NAMES))
]
# again, must specify in same order as class names
sampling_sizes = [
    params.DATA_training_sample_count_neg,
    params.DATA_training_sample_count_pos
コード例 #45
0
'''
3. Performance-measurement and -improvement
'''
import cv2
import numpy as np
import matplotlib.pyplot as plt
# The modules time and profile from python are assisting well on this behalf

# cv2.getTickCount() is like tic() toc() in other languages
e1 = cv2.getTickCount()  # Is the same as time.time()
img = cv2.imread('test_image.png')
plt.imshow(img[:,:,::1])
plt.show()
e2 = cv2.getTickCount()

# cv2.getTickFrequency = numbers of clock-cycles per second
t = (e2 - e1) / cv2.getTickFrequency()
print("e2 - e1 = {}\n".format(e2 - e1))
print("t = {}".format(t))


# OpenCV has much optimized code by default:
cv2.setUseOptimized(True)
cv2.useOptimized()
%timeit res = cv2.medianBlur(img,49)

# With disabled optimization
cv2.setUseOptimized(False)
cv2.useOptimized()
%timeit res = cv2.medianBlur(img,49)
コード例 #46
0
import cv2 as cv
import numpy as np

# 왜 최적화가 필요한가? 이미지처리에는 엄청나게 많은 연산이 진행되기 때문
# 배울 것
# cv.getTickCount
# cv.getTickFrequency

img = cv.imread("../1_arithmetic_operation/apple.jpg")

e1 = cv.getTickCount()  # 코드 실행 시간
for i in range(5, 49, 2):
    img = cv.medianBlur(img, i)
e2 = cv.getTickCount()  # 코드 실행 종료 시간
t = (e2 - e1) * 1000 / cv.getTickFrequency()  # 총 코드 실행 시간
print(t, "ms")
コード例 #47
0
ファイル: cmarkers.py プロジェクト: paulaksm/MAC0318-2018
def getCMarkers (img):
    e1 = cv2.getTickCount()
    markers = []
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, 10)
    
    kernel = np.ones((2,2),np.uint8)
    img2 = cv2.morphologyEx(img3, cv2.MORPH_CLOSE, kernel)

    kernel = np.ones((2,2),np.uint8)
    img2 = cv2.dilate(img2,kernel, 1)

    # cv2.imshow("test1", img2)

    # Setup SimpleBlobDetector parameters.
    params = cv2.SimpleBlobDetector_Params()
    params.filterByInertia = False
    params.filterByConvexity = False

    # Filter by Area.
    params.filterByArea = True
    params.minArea = 5
    params.minDistBetweenBlobs = 1

    # Filter by Circularity
    params.filterByCircularity = True
    params.minCircularity = 0.5

    # # Filter by Convexity
    params.filterByConvexity = True
    params.minConvexity = 0.70
        
    # Filter by Inertia
    params.filterByInertia = True
    params.minInertiaRatio = 0.2
    params.filterByColor = False

    # Create a detector with the parameters
    detector = cv2.SimpleBlobDetector_create(params)

    # Detect blobs.
    keypoints = detector.detect(img2)


    points = []
    validpoints = []
    for point  in keypoints:
        count = []
        for p  in keypoints:
            distance = (p.pt[0]-point.pt[0])**2+(p.pt[1]-point.pt[1])**2
            if p == point:
                continue
            elif distance <= (point.size*4.5)**2 and (abs(point.size/p.size-1) <= 0.3):
                count.append(p.pt)
        if len(count) >= 2:
            points.append((point.pt, count))
            validpoints.append(point)

    for point in points:
        p, near = point
        # distance open the angre and 90 degree
        midistance = math.pi/30.0
        bottom = [] 
        rigth = [] 
        for p1 in near:
            for p2 in near:
                if p1 == p2:
                    continue
                u = np.array([p1[0]-p[0], p1[1]-p[1]])
                v = np.array([p2[0]-p[0], p2[1]-p[1]])
                angle = np.math.atan2(np.linalg.det([u,v]),np.dot(u,v))
                if abs(angle-math.pi/2.0) < math.pi/30.0:
                    bottom = p1
                    rigth = p2

                    
                    conner = rigth+u
                    addu = u/6.0
                    addv = v/6.0
                    conners = [p-addu-addv, bottom+addu-addv, rigth-addu+addv, conner+addu+addv]
                    trans = transformMatrixPoints(conners, [10, 10], 10)
                    code = cv2.warpPerspective(gray, trans, dsize=(100, 100))
                    # code = cv2.adaptiveThreshold(code, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 25, 1)

                    number = getNumber(code, 160)
                    if number == False:
                        continue
                    # cv2.imshow("m2", code)

                    uu = np.array([0, 1])
                    angle = np.math.atan2(np.linalg.det([v,uu]),np.dot(v,uu))

                    mid = p+u*0.5+v*0.5
                    if number != 0:
                        markers.append([number, mid, angle])
    
    # img2 = cv2.drawKeypoints(img2, validpoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
    # cv2.imshow("m3", img2)
    return markers
コード例 #48
0
ファイル: mil2.py プロジェクト: aglshivam/SMAI-Project
    bbox = (287, 23, 86, 320)

    # Uncomment the line below to select a different bounding box
    bbox = cv2.selectROI(frame, False)

    # Initialize tracker with first frame and bounding box
    ok = tracker.init(frame, bbox)

    while True:
        # Read a new frame
        ok, frame = video.read()
        if not ok:
            break

        # Start timer
        timer = cv2.getTickCount()

        # Update tracker
        ok, bbox = tracker.update(frame)

        #fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);

        # Draw bounding box
        if ok:
            # Tracking success
            p1 = (int(bbox[0]), int(bbox[1]))
            p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
            cv2.rectangle(frame, p1, p2, (255, 0, 0), 2, 1)
        else:
            # Tracking failure
            cv2.putText(frame, "Tracking failure detected", (100, 80),
コード例 #49
0
    def cascade_vh(self):
        face_flag = 0
        target_lose_cnt = 0
        while (cv2.waitKey(1) != 27):
            start_tc = cv2.getTickCount()
            grabbed, frame = self.cap.read()
            if not grabbed:
                logging.info("READ OVER")
                break

            if not face_flag:
                face_bbox = self.detector.face_detection(frame)
                # No face has been detected
                if isinstance(face_bbox, int):
                    cv2.imshow("frame", frame)
                    continue
                # detect successfully
                else:
                    logging.info("tracker init")
                    face_flag = 1
                    face_bbox = self.expand_bbox(*face_bbox)
                    self.tracker.start_track(frame, *face_bbox)
                    target_lose_cnt = 0

            else:
                # track
                if target_lose_cnt < self.lose_threshold:
                    (success, box_predict) = self.tracker.update_track(frame)
                    if not success:
                        logging.debug("update failed")
                        target_lose_cnt += 1
                        cv2.imshow("frame", frame)
                        continue

                    (old_x, old_y, old_w, old_h) = (int(v)
                                                    for v in box_predict)

                    # draw predict rect
                    # self.draw_rect(frame,(old_x, old_y, old_w, old_h),(255,0,0))
                    # face_bbox is relative coordinates!!!!
                    face_bbox = self.detector.face_detection(
                        frame[old_y:old_y + old_h, old_x:old_x + old_w])
                    if isinstance(face_bbox, int):
                        target_lose_cnt += 1
                        cv2.imshow("frame", frame)
                        continue
                    target_lose_cnt = 0
                    face_bbox = self.expand_bbox(*face_bbox)
                    face_bbox[0] += int(old_x)
                    face_bbox[1] += int(old_y)

                # lose target
                else:
                    logging.info("losing target")
                    # reset tracker
                    self.tracker = Tracker()
                    face_flag = 0
                    cv2.imshow("frame", frame)
                    continue

            # self.draw_rect(frame,face_bbox,(0,255,0))
            face_rect = self.bbox_to_rect(face_bbox)
            success, frame = self.run_face_swap(frame, face_rect)
            if not success:
                pass

            cv2.imshow("output", frame)

            end_tc = cv2.getTickCount()
            fps = cv2.getTickFrequency() / (end_tc - start_tc)
            logging.info("fps {}".format(fps))
        cv2.destroyAllWindows()
        self.cap.release()
コード例 #50
0
#         # frame = cv.pyrMeanShiftFiltering(frame, 20, 100)
#         frame = cv.GaussianBlur(frame, (3, 3), 0)
#         # hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
#         # mask1 = cv.inRange(hsv, lowerb=lower_hsv, upperb=upper_hsv)
#         mask = cv.inRange(frame, lowerb=np.array([0, 0, 110]), upperb=np.array([110, 110, 255]))
#         kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
#         mask = cv.morphologyEx(mask, cv.MORPH_OPEN, kernel)
#         # mask = cv.bitwise_or(mask1, mask2)

#         # dst = cv.bitwise_and(frame, frame, mask=mask)

#         contours, heriachy = cv.findContours(mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
#         for i, contour in enumerate(contours):
#             contour_area = cv.contourArea(contour)
#             x, y, w, h = cv.boundingRect(contour)
#             cv.drawContours(mask, contours, i, (0, 0, 255), 3)
#             if contour_area > 0.8 * w * h:
#                 cv.drawContours(frame, contours, i, (255, 0, 255), 2)

#         cv.imshow("mask", mask)
#         cv.imshow("video", frame)

#         if cv.waitKey(40) == 27:
#             break

t1 = cv.getTickCount()
extrace_object_demo()
t2 = cv.getTickCount()
print("time: %s ms" % ((t2 - t1) / cv.getTickFrequency() * 1000))

# cv.destroyAllWindows()
コード例 #51
0
from __future__ import print_function
import cv2 as cv

capture = cv.VideoCapture(0)
ret, frame_first = capture.read()
ret, frame_first = capture.read()
ret, frame_first = capture.read()
ret, frame_first = capture.read()
ret, frame_first = capture.read()
frame_first_gray = cv.cvtColor(frame_first, cv.COLOR_BGR2GRAY)
frame_first_blurred = cv.GaussianBlur(frame_first_gray, (5, 5), 0)

while True:
    start = cv.getTickCount()
    _, frame = capture.read()

    if frame is None:
        break

    frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    frame_blurred = cv.GaussianBlur(frame_gray, (5, 5), 0)
    # frame_canny = cv.Canny(frame_blurred, 50, 150)

    difference = cv.absdiff(frame_first_blurred, frame_blurred)
    _, difference = cv.threshold(difference, 25, 255, cv.THRESH_BINARY)
    difference_blurred = cv.GaussianBlur(difference, (5, 5), 0)

    cv.imshow('BG Filtered', difference_blurred)

    keyboard = cv.waitKey(30)
    if keyboard == 'q' or keyboard == 27:
コード例 #52
0
while True:
    ok, frame = video.read()
    if not ok: break
    cv.imshow('Tracking', frame)
    if cv.waitKey(1) != -1: break

bbox = cv.selectROI('Tracking', frame, showCrosshair=False)
print(bbox)

# Initialize tracker with first frame and bounding box
ok = tracker.init(frame, bbox)
print('tracker.init :', ok)

count = 0
fps = 0
t0 = cv.getTickCount()

while True:

    ok, frame = video.read()
    if not ok: break
    if cv.waitKey(1) == 27: break

    # Update tracker
    ok, bbox = tracker.update(frame)

    # Draw bounding box
    if ok:
        # Tracking success
        p1 = (int(bbox[0]), int(bbox[1]))
        p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
コード例 #53
0

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Human face detect and Track')
    parser.add_argument('--video_path', default=0, help='Path for video')
    args = parser.parse_args()
    video_path = args.parse_args()
    d = Detector()
    t = Tracker()

    cap = cv2.VideoCapture(video_path)
    face_flag = 0
    lose_threshold = 10
    target_lose_cnt = 0
    while (cv2.waitKey(1) != 27):
        start_tc = cv2.getTickCount()
        grabbed, frame = cap.read()
        if not grabbed:
            break

        if not face_flag:
            face_bbox = d.face_detection(frame)
            # No face has been detected
            if isinstance(face_bbox, int):
                cv2.imshow("output", frame)
                continue
            # detect successfully
            else:
                logging.info("tracker init")
                face_flag = 1
                face_bbox = expand_bbox(*face_bbox)
コード例 #54
0
SIZE = h_img.size
NUM_BIN = 256
n_threads = int(numpy.ceil((SIZE + NUM_BIN - 1) / NUM_BIN))
start = drv.Event()
end = drv.Event()
start.record()
# Calling kernel
atomic_hist(drv.Out(h_result),
            drv.In(h_a),
            numpy.uint32(SIZE),
            block=(n_threads, 1, 1),
            grid=(NUM_BIN, 1))
end.record()
end.synchronize()
secs = start.time_till(end) * 1e-3
print("Time for Calculating Histogram on GPU without shared memory")
print("%fs" % (secs))
plt.stem(h_result)
plt.xlim([0, 256])
plt.title("Histogram on GPU")

start = cv2.getTickCount()
# OpenCV calcHist
hist = cv2.calcHist([h_img], [0], None, [256], [0, 256])
end = cv2.getTickCount()
secs = (end - start) / cv2.getTickFrequency()
print("Time for Calculating Histogram using OpenCV")
print("%fs" % (secs))
# plt.stem(hist)
# plt.xlim([0,256])
コード例 #55
0
ファイル: run_dimp_RF.py プロジェクト: Suke0/AlphaRefine
def main(model_code):
    # create tracker
    tracker_info = Tracker(args.tracker_name, args.tracker_param, None)
    params = tracker_info.get_parameters()
    params.visualization = args.vis
    params.debug = args.debug
    params.visdom_info = {
        'use_visdom': False,
        'server': '127.0.0.1',
        'port': 8097
    }
    tracker = tracker_info.tracker_class(params)

    RF_module = RefineModule(refine_path.format(model_code),
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    model_name = args.tracker_name + '_' + args.tracker_param +\
                 '{}-{}'.format(RF_type.format(model_code), selector_path) + '_%d'%(args.run_id)

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)

    if args.dataset in ['VOT2016', 'VOT2018', 'VOT2019']:
        total_lost = 0

        # restart tracking
        for v_idx, video in enumerate(dataset):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            frame_counter = 0
            lost_number = 0
            toc = 0
            '''对refinement module计时'''
            toc_refine = 0
            pred_bboxes = []
            for idx, (img, gt_bbox) in enumerate(video):
                if len(gt_bbox) == 4:
                    gt_bbox = [
                        gt_bbox[0], gt_bbox[1], gt_bbox[0],
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1,
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1, gt_bbox[1]
                    ]
                tic = cv2.getTickCount()
                '''get RGB format image'''
                img_RGB = img[:, :, ::-1].copy()  # BGR --> RGB
                if idx == frame_counter:
                    H, W, _ = img.shape
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                    '''Initialize'''
                    gt_bbox_np = np.array(gt_bbox_)
                    gt_bbox_torch = torch.from_numpy(
                        gt_bbox_np.astype(np.float32))
                    init_info = {}
                    init_info['init_bbox'] = gt_bbox_torch
                    _ = tracker.initialize(img_RGB, init_info)
                    '''##### initilize refinement module for specific video'''
                    RF_module.initialize(img_RGB, np.array(gt_bbox_))

                    pred_bbox = gt_bbox_
                    pred_bboxes.append(1)
                elif idx > frame_counter:
                    '''Track'''
                    outputs = tracker.track(img_RGB)
                    pred_bbox = outputs['target_bbox']
                    '''##### refine tracking results #####'''
                    pred_bbox = RF_module.refine(img_RGB, np.array(pred_bbox))
                    '''report result and update state'''
                    x1, y1, w, h = pred_bbox.tolist()
                    '''add boundary and min size limit'''
                    x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                    w = x2 - x1
                    h = y2 - y1
                    new_pos = torch.from_numpy(
                        np.array([y1 + h / 2, x1 + w / 2]).astype(np.float32))
                    new_target_sz = torch.from_numpy(
                        np.array([h, w]).astype(np.float32))
                    new_scale = torch.sqrt(new_target_sz.prod() /
                                           tracker.base_target_sz.prod())
                    ##### update
                    tracker.pos = new_pos.clone()
                    tracker.target_sz = new_target_sz
                    tracker.target_scale = new_scale

                    overlap = vot_overlap(pred_bbox, gt_bbox,
                                          (img.shape[1], img.shape[0]))
                    if overlap > 0:
                        # not lost
                        pred_bboxes.append(pred_bbox)
                    else:
                        # lost object
                        pred_bboxes.append(2)
                        frame_counter = idx + 5  # skip 5 frames
                        lost_number += 1
                else:
                    pred_bboxes.append(0)
                toc += cv2.getTickCount() - tic
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > frame_counter:
                    cv2.polylines(
                        img, [np.array(gt_bbox, np.int).reshape(
                            (-1, 1, 2))], True, (0, 255, 0), 3)
                    if len(pred_bbox) == 8:
                        cv2.polylines(
                            img,
                            [np.array(pred_bbox, np.int).reshape(
                                (-1, 1, 2))], True, (0, 255, 255), 3)
                    else:
                        bbox = list(map(int, pred_bbox))
                        cv2.rectangle(img, (bbox[0], bbox[1]),
                                      (bbox[0] + bbox[2], bbox[1] + bbox[3]),
                                      (0, 255, 255), 3)
                    cv2.putText(img, str(idx), (40, 40),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.putText(img, str(lost_number), (40, 80),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
                    cv2.imshow(video.name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()
            # save results
            video_path = os.path.join(save_dir, args.dataset, model_name,
                                      'baseline', video.name)
            if not os.path.isdir(video_path):
                os.makedirs(video_path)
            result_path = os.path.join(video_path,
                                       '{}_001.txt'.format(video.name))
            with open(result_path, 'w') as f:
                for x in pred_bboxes:
                    if isinstance(x, int):
                        f.write("{:d}\n".format(x))
                    else:
                        f.write(','.join([vot_float2str("%.4f", i)
                                          for i in x]) + '\n')
            print(
                '({:3d}) Video: {:12s} Time: {:4.1f}s Speed: {:3.1f}fps Lost: {:d}'
                .format(v_idx + 1, video.name, toc, idx / toc, lost_number))
            total_lost += lost_number
        print("{:s} total lost: {:d}".format(model_name, total_lost))
コード例 #56
0
ファイル: visage_camera.py プロジェクト: zouhir10/Tutoriels
import cv2

face_cascade = cv2.CascadeClassifier("./haarcascade_frontalface_alt2.xml")
cap = cv2.VideoCapture(0)

while True:
    ret, frame = cap.read()
    tickmark = cv2.getTickCount()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    face = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3)
    for x, y, w, h in face:
        cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
    fps = cv2.getTickFrequency() / (cv2.getTickCount() - tickmark)
    cv2.putText(frame, "FPS: {:05.2f}".format(fps), (10, 30),
                cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 2)
    cv2.imshow('video', frame)
cap.release()
cv2.destroyAllWindows()
コード例 #57
0
ファイル: imageBitwise.py プロジェクト: ichae/opencv-1
import cv2

cv2.setUseOptimized(True)

e1 = cv2.getTickCount()
img1 = cv2.imread('capture 0.png')
img2 = cv2.imread('images.png')

rows, cols, channels = img2.shape
roi = img1[0:rows, 0:cols]

img2gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(img2gray, 1, 10, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)

img1_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)

img2_fg = cv2.bitwise_and(img2, img2, mask=mask)

dst = cv2.add(img1_bg, img2_fg)

img1[0:rows, 0:cols] = dst

cv2.imshow('image', img1)
e2 = cv2.getTickCount()

t = (e2 - e1) / cv2.getTickFrequency()

print t

cv2.waitKey(0)
コード例 #58
0
ファイル: logging.py プロジェクト: Royz2123/Python-Drone
 def debug(msg):
     if Debug.debug_mode:
         print("%f: %s" % (
             cv.getTickCount(),
             msg
         ))
コード例 #59
0
# programa para calcular frame fps en varios escenarios
# 1) basico sin sin ninguna programacion especial.
# prom 48 fps, min 34, max 68.
import cv2

captura = cv2.VideoCapture(0)
while (captura.isOpened()):
    timer = cv2.getTickCount()  # inicia el tiempo de fps
    ret, imagen = captura.read()
    if ret == True:
        fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer
                                        )  # calcula el tiempo fps
        # voltea la imagen
        imagen = cv2.flip(imagen, 0)
        cv2.putText(imagen, str(int(fps)), (75, 50), cv2.FONT_HERSHEY_COMPLEX,
                    0.7, (0, 255, 0), 2)
        cv2.imshow('video', imagen)
        #print("Frames por segundos: ", str(int(fps)))
        if cv2.waitKey(1) & 0xFF == ord('s'):
            break
    else:
        break
captura.release()
cv2.destroyAllWindows()
コード例 #60
0
    return data, rows, cols, dims


train_data, rows, cols, dims = image_read(
    'D:\\Learning materials\\machine_homework\\training4'
)  # 载入对应的训练图片,共20个训练样本
test_data = cv.imread(
    'D:\\Learning materials\\machine_homework\\test3\\image21.jpg'
)  # 载入对应的测试图片,有一个测试样本
test_data = np.asarray(test_data)  # 将图片转化成数组形式

h, temp = 100, 1  # 带宽值设定为120,中间变量为1
P = np.zeros((rows, cols))  # 一个二维的全0数组,为最后的输出概率
P1 = np.empty((rows, cols, dims))  # 三维的全空数组
P2 = np.zeros((rows, cols))  # 二维的全0数组
t1 = cv.getTickCount()  # 计算整个kde算法所需要的时间

for i in range(19):  #  共19个训练样本
    for j in range(rows):
        for k in range(cols):
            for l in range(dims):
                P1[j, k, l] = 1 - pow(
                    (test_data[j, k, l] - train_data[j, k, l, i]) / h, 2)
                if P1[j, k, l] < 0:  # 如果概率密度函数值小于0,那么将其赋值为0
                    P1[j, k, l] = 0
                temp = temp * P1[j, k, l]
            P2[j, k] = temp
            temp = 1.0
    P = P + P2  # 概率值叠加
P = 15 / (8 * pi * 20 * h**3) * P  # EP函数的表达式,其中N=20