print('TYPE:', ntype) n = Net(D, C, type_of_net=ntype, y_is_coded=y_coded and ntype not in ('vib', 'vae'), batch_norm='encoder', features='vgg16', encoder_layer_sizes=[], decoder_layer_sizes=[], classifier_layer_sizes=cls_cvae if ntype == 'cvae' else [20, 10], sigma=0, gamma=gamma, force_cross_y=0, latent_sampling=L, latent_dim=K) n.to(d) nets[ntype] = n # n.compute_max_batch_size(batch_size=1024) # print(n.max_batch_sizes) if n.y_is_coded: pass if ntype != 'vae': print('y in input') out_y[ntype] = n.evaluate(x, y) print('y is none') out[ntype] = n.evaluate(x) for o, _y in zip((out, out_y), ('*', 'y')):
jvae.saved_dir = save_dir if args.resume: with open(os.path.join(resumed_from, 'RESUMED'), 'w') as f: f.write(str(job_number) + '\n') with open(os.path.join(job_dir, f'number-{hostname}'), 'w') as f: f.write(str(job_number + 1) + '\n') log.info('Network built, will be saved in') log.info(save_dir) log.debug('%s: %s', 'Network architecture', jvae.print_architecture(True, True)) jvae.to(device) # print('*** .device', jvae.device) x, y = torchdl.get_batch(trainset, device=device, batch_size=8) if debug: log.debug('Trying a first pass') log.debug('x in [%.2f, %.2f] with mean (std) %.2f (%.2f)', x.min().item(), x.max().item(), x.mean().item(), x.std().item()) outs = jvae(x, y if jvae.y_is_coded else None) log.debug(' -- '.join(map(str, ([tuple(u.shape) for u in outs]))))