コード例 #1
0
ファイル: test_crop.py プロジェクト: tmralmeida/wasp-lfr-m2
def test_crop_shape():
    from cvl.image_io import crop_patch
    from cvl.dataset import BoundingBox
    import numpy as np

    img = np.random.uniform(size=(1200, 600))
    region = BoundingBox('tl-size', 50, 60, 100, 200)

    crop = crop_patch(img, region)
    assert crop.shape == region.shape()
コード例 #2
0
ファイル: ncc.py プロジェクト: TobiasNorlund/lfr-module-2
    def detect(self, image):
        # Convert to grayscale
        image = np.sum(image, 2) / 3
        patch = self.crop_patch(image)
        patch = patch / 255
        patch = patch - np.mean(patch)
        patch = patch / np.std(patch)
        patchf = fft2(patch)

        responsef = np.conj(self.template) * patchf
        response = ifft2(responsef)

        r, c = np.unravel_index(np.argmax(response), response.shape)

        # Keep for visualisation
        self.last_response = response

        r_offset = np.mod(r + self.region_center[0], self.region.height) - self.region_center[0]
        c_offset = np.mod(c + self.region_center[1], self.region.width) - self.region_center[1]

        self.region.xpos += c_offset
        self.region.ypos += r_offset

        # Revert update if bbox is completely out of image
        if self.region.intersection_box(BoundingBox("tl-size", 0, 0, image.shape[1], image.shape[0])).area() == 0.0:
            self.region.ypos -= r_offset
            self.region.xpos -= c_offset

        return self.region
コード例 #3
0
ファイル: mosse.py プロジェクト: TobiasNorlund/lfr-module-2
    def detect(self, image):
        """
        Find the object's new position in image, using current model M
        """
        # Convert to grayscale
        image = np.sum(image, 2) / 3

        patch = crop_patch(image, self.region)

        P = fft2(MOSSETrackerGrayscale.normalize(patch))
        response = ifft2( np.conjugate(self.M) * P )

        r, c = np.unravel_index(np.argmax(response), response.shape)

        # Keep for visualisation
        self.last_response = response

        r_offset = np.mod(r + self.region_center[0], self.region.height) - self.region_center[0]
        c_offset = np.mod(c + self.region_center[1], self.region.width) - self.region_center[1]

        self.region.xpos += c_offset
        self.region.ypos += r_offset

        # Revert update if bbox is completely out of image
        if self.region.intersection_box(BoundingBox("tl-size", 0, 0, image.shape[1], image.shape[0])).area() == 0.0:
            self.region.ypos -= r_offset
            self.region.xpos -= c_offset

        return self.region
コード例 #4
0
ファイル: test_crop.py プロジェクト: tmralmeida/wasp-lfr-m2
def test_crop_pad_value_negative():
    from cvl.image_io import crop_patch
    from cvl.dataset import BoundingBox
    import numpy as np

    img = np.random.uniform(size=(1200, 600))
    region = BoundingBox('tl-size', -1, 0, 100, 75)

    crop = crop_patch(img, region)

    assert crop[0, 0] == 0
コード例 #5
0
ファイル: test_crop.py プロジェクト: tmralmeida/wasp-lfr-m2
def test_crop_region():
    from cvl.image_io import crop_patch
    from cvl.dataset import BoundingBox
    import numpy as np

    img = np.random.uniform(size=(1200, 600))
    region = BoundingBox('tl-size', 60, 50, 100, 200)
    crop = crop_patch(img, region)

    assert crop[0, 0] == img[region.ypos, region.xpos]
    assert crop[-1, -1] == img[region.ypos + region.height - 1, region.xpos + region.width - 1]
コード例 #6
0
ファイル: debug_example.py プロジェクト: ngunnar/VOT
from cvl.dataset import OnlineTrackingBenchmark, BoundingBox
from cvl.rgb_mosse import MultiMosseTracker

SHOW_TRACKING = True

if __name__ == "__main__":

    a_seq = {}
    j_x = 0
    j_y = 0
    for i in range(20):
        image = np.zeros((500, 500, 3)).astype('float32')
        image[j_x:40 + j_x, j_y:40 + j_y, :] = 1.0
        a_seq[i] = {
            'image': image,
            'bounding_box': BoundingBox('tl-size', j_x - 20, j_y - 20, 80, 80)
        }
        j_x += 5
        j_y += 5

    for i in range(20, 40):
        image = np.zeros((500, 500, 3)).astype('float32')
        image[j_x:40 + j_x, j_y:40 + j_y, :] = 1.0
        a_seq[i] = {
            'image': image,
            'bounding_box': BoundingBox('tl-size', j_x - 20, j_y - 20, 80, 80)
        }
        j_x -= 5
        j_y += 5

    for i in range(40, 60):