#!/usr/bin/env python3 import math import time # from tabu import tabu_search import tabu # import matplotlib.pyplot as plt import sys from os.path import join, dirname # import CVRPFileParser sys.path.append(join(dirname(__file__), "../benchmark")) from cvrp_parser import CVRPFileParser if __name__ == '__main__': p = CVRPFileParser('../benchmark/instances/Vrp-Set-A/A-n32-k5.vrp') # p = CVRPFileParser('../benchmark/instances/Vrp-Set-A/A-n38-k5.vrp') p.parse() capacity = p.capacity distances = p.distances demands = p.demands coordinates = p.coordinates print(capacity) print(distances) print(demands) tabu.MAX_ITER = 2000 time_begin = time.process_time() costs = [] solution, distance = tabu.tabu_search(capacity=capacity, distances=distances,
result = dict() result['iteration'] = args.iter result['algorithm'] = args.algo # each instance, we make 5 runs num_runs = args.num_sample # case selection of which algo if args.algo == "tabu_search": # Tabu search import tabu_search.tabu as tabu tabu.MAX_ITER = args.iter for inst_ in benchmark_instances: p = CVRPFileParser(inst_) p.parse() inst_result = dict() inst_result['cost'] = [] inst_result['proc_time'] = [] inst_result['sol'] = [] inst_result['loads'] = [] for _ in range(num_runs): stime = time.process_time() solution, cost = tabu.tabu_search( capacity=p.capacity, distances=p.distances, demands=p.demands) etime = time.process_time() # save down the cost and cpu time
from cvrp_parser import CVRPFileParser if __name__ == '__main__': parser = CVRPFileParser('instances/Vrp-Set-A/A-n32-k5.vrp') parser.parse() print(parser.data) print(parser.capacity) print(parser.distances) print(parser.demands)
import GA_VRP import time import matplotlib.pyplot as plt import math import sys from os.path import join, dirname # import CVRPFileParser sys.path.append(join(dirname(__file__), "../benchmark")) from cvrp_parser import CVRPFileParser if __name__ == '__main__': # p = CVRPFileParser('../benchmark/instances/Vrp-Set-A/A-n32-k5.vrp') p = CVRPFileParser('../benchmark/instances/Vrp-Set-B/B-n34-k5.vrp') p.parse() # ============================ # PUT PARAMETER INTO MODULE # ============================ GA_VRP.mod_param_config(city_num=p.dimension, coordinates=p.coordinates, capacity=p.capacity, distances=p.distances, demands=p.demands) #GA time_begin = time.process_time() population = GA_VRP.initialization() population = GA_VRP.main_GA(population) best_chromo = population[0] best_trips = best_chromo.trips