def get_embeddings(image, net, device): transform = cvtransforms.Compose([ cvtransforms.Resize((112, 112)), cvtransforms.RandomHorizontalFlip(), cvtransforms.ToTensor(), cvtransforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transformed_image = transform(image).to(device) the_image = Variable(transformed_image).unsqueeze(0) # net.eval() embeddings = l2_norm(net.forward(the_image)).detach() # remain data at gpu return embeddings
test_indices, trainer): pass def parameters_dict_to_model_name(parameters_dict): pass if __name__ == "__main__": img_path = args.img_path gt_path = args.gt_path # create dataset train_input_transform_list = [ cvtransforms.Resize(size=input_tensor_res, interpolation='BILINEAR'), cvtransforms.RandomHorizontalFlip(), cvtransforms.RandomVerticalFlip(), cvtransforms.RandomRotation(90), cvtransforms.ToTensor(), # cvtransforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ] val_input_transform_list = [ cvtransforms.Resize(size=input_tensor_res, interpolation='BILINEAR'), cvtransforms.ToTensor(), # cvtransforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ] train_transforms = [ compose_input_output_transform( input_transform=cvtransforms.Compose(train_input_transform_list)),