def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting = False): """Compute QR decomposition of a matrix. Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal and R upper triangular. Parameters ---------- a : array, shape (M, N) Matrix to be decomposed overwrite_a : bool, optional Whether data in a is overwritten (may improve performance) lwork : int, optional Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed. mode : {'full', 'r', 'economic'} Determines what information is to be returned: either both Q and R ('full', default), only R ('r') or both Q and R but computed in economy-size ('economic', see Notes). Returns ------- Q : double or complex ndarray Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned if ``mode='r'``. R : double or complex ndarray Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``. Raises LinAlgError if decomposition fails Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead of (M,M) and (M,N), with ``K=min(M,N)``. Examples -------- >>> from scipy import random, linalg, dot >>> a = random.randn(9, 6) >>> q, r = linalg.qr(a) >>> allclose(a, dot(q, r)) True >>> q.shape, r.shape ((9, 9), (9, 6)) >>> r2 = linalg.qr(a, mode='r') >>> allclose(r, r2) >>> q3, r3 = linalg.qr(a, mode='economic') >>> q3.shape, r3.shape ((9, 6), (6, 6)) """ if mode == 'qr': # 'qr' was the old default, equivalent to 'full'. Neither 'full' nor # 'qr' are used below, but set to 'full' anyway to be sure mode = 'full' if not mode in ['full', 'qr', 'r', 'economic']: raise ValueError(\ "Mode argument should be one of ['full', 'r', 'economic']") a1 = asarray_chkfinite(a) if len(a1.shape) != 2: raise ValueError("expected 2D array") M, N = a1.shape overwrite_a = overwrite_a or (_datanotshared(a1, a)) if pivoting: qr = cvxopt.matrix(0, a1.shape, tc = 'd') qr[:, :] = a1 tau = cvxopt.matrix(0, (min(M, N), 1), tc = 'd') jpvt = cvxopt.matrix(0, (N, 1), tc = 'i') lapack.geqp3(qr, jpvt, tau) qr = numpy.asarray(qr) tau = numpy.asarray(tau) jpvt = (numpy.asarray(jpvt) - 1).ravel() else: geqrf, = get_lapack_funcs(('geqrf',), (a1,)) if lwork is None or lwork == -1: # get optimal work array qr, tau, work, info = geqrf(a1, lwork=-1, overwrite_a=1) lwork = work[0].real.astype(numpy.int) qr, tau, work, info = geqrf(a1, lwork=lwork, overwrite_a=overwrite_a) if info < 0: raise ValueError("illegal value in %d-th argument of internal geqrf" % -info) if not mode == 'economic' or M < N: R = special_matrices.triu(qr) else: R = special_matrices.triu(qr[0:N, 0:N]) if mode == 'r': return R if find_best_lapack_type((a1,))[0] == 's' or \ find_best_lapack_type((a1,))[0] == 'd': gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,)) else: gor_un_gqr, = get_lapack_funcs(('ungqr',), (qr,)) if M < N: # get optimal work array Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=-1, overwrite_a=1) lwork = work[0].real.astype(numpy.int) Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=lwork, overwrite_a=1) elif mode == 'economic': # get optimal work array Q, work, info = gor_un_gqr(qr, tau, lwork=-1, overwrite_a=1) lwork = work[0].real.astype(numpy.int) Q, work, info = gor_un_gqr(qr, tau, lwork=lwork, overwrite_a=1) else: t = qr.dtype.char qqr = numpy.empty((M, M), dtype=t) qqr[:,0:N] = qr # get optimal work array Q, work, info = gor_un_gqr(qqr, tau, lwork=-1, overwrite_a=1) lwork = work[0].real.astype(numpy.int) Q, work, info = gor_un_gqr(qqr, tau, lwork=lwork, overwrite_a=1) if info < 0: raise ValueError("illegal value in %d-th argument of internal gorgqr" % -info) if pivoting: return Q, R, jpvt return Q, R
def qr(a, overwrite_a=0, lwork=None, mode='qr', pivoting = False): """Compute QR decomposition of a matrix. Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal and R upper triangular. Parameters ---------- a : array, shape (M, N) Matrix to be decomposed overwrite_a : boolean Whether data in a is overwritten (may improve performance) lwork : integer Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed. mode : {'qr', 'r', 'economic'} Determines what information is to be returned: either both Q and R or only R, or Q and R and P, a permutation matrix. Any of these can be combined with 'economic' using the '+' sign as a separator. Economic mode means the following: Compute the economy-size QR decomposition, making shapes of Q and R (M, K) and (K, N) instead of (M,M) and (M,N). K=min(M,N). pivoting : bool, optional Whether or not factorization should include pivoting for rank-revealing qr decomposition. If pivoting, compute the decomposition :lm:`A P = Q R` as above, but where P is chosen such that the diagonal of R is non-increasing. P represents the new column order of A. Returns ------- (if mode == 'qr') Q : double or complex array, shape (M, M) or (M, K) for econ==True (for any mode) R : double or complex array, shape (M, N) or (K, N) for econ==True Size K = min(M, N) P : integer ndarray Of shape (N,) for ``pivoting=True``. Not returned if ``pivoting=False``. Raises LinAlgError if decomposition fails Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. Examples -------- >>> from scipy import random, linalg, dot >>> a = random.randn(9, 6) >>> q, r = linalg.qr(a) >>> allclose(a, dot(q, r)) True >>> q.shape, r.shape ((9, 9), (9, 6)) >>> r2 = linalg.qr(a, mode='r') >>> allclose(r, r2) >>> q3, r3 = linalg.qr(a, mode='economic') >>> q3.shape, r3.shape ((9, 6), (6, 6)) """ mode = mode.split("+") if "economic" in mode: econ = True else: econ = False a1 = asarray_chkfinite(a) if len(a1.shape) != 2: raise ValueError("expected 2D array") M, N = a1.shape overwrite_a = overwrite_a or (_datanotshared(a1,a)) if pivoting: qr = cvxopt.matrix(0, a1.shape, tc = 'd') qr[:, :] = a1 tau = cvxopt.matrix(0, (min(M, N), 1), tc = 'd') jpvt = cvxopt.matrix(0, (N, 1), tc = 'i') lapack.geqp3(qr, jpvt, tau) qr = numpy.asarray(qr) tau = numpy.asarray(tau) jpvt = (numpy.asarray(jpvt) - 1).ravel() else: geqrf, = get_lapack_funcs(('geqrf',),(a1,)) if lwork is None or lwork == -1: # get optimal work array qr,tau,work,info = geqrf(a1,lwork=-1,overwrite_a=1) lwork = work[0] qr,tau,work,info = geqrf(a1,lwork=lwork,overwrite_a=overwrite_a) if info<0: raise ValueError("illegal value in %d-th argument of internal geqrf" % -info) if not econ or M<N: R = basic.triu(qr) else: R = basic.triu(qr[0:N,0:N]) if 'r' in mode: return R if find_best_lapack_type((a1,))[0]=='s' or find_best_lapack_type((a1,))[0]=='d': gor_un_gqr, = get_lapack_funcs(('orgqr',),(qr,)) else: gor_un_gqr, = get_lapack_funcs(('ungqr',),(qr,)) if M<N: # get optimal work array Q,work,info = gor_un_gqr(qr[:,0:M],tau,lwork=-1,overwrite_a=1) lwork = work[0] Q,work,info = gor_un_gqr(qr[:,0:M],tau,lwork=lwork,overwrite_a=1) elif econ: # get optimal work array Q,work,info = gor_un_gqr(qr,tau,lwork=-1,overwrite_a=1) lwork = work[0] Q,work,info = gor_un_gqr(qr,tau,lwork=lwork,overwrite_a=1) else: t = qr.dtype.char qqr = numpy.empty((M,M),dtype=t) qqr[:,0:N]=qr # get optimal work array Q,work,info = gor_un_gqr(qqr,tau,lwork=-1,overwrite_a=1) lwork = work[0] Q,work,info = gor_un_gqr(qqr,tau,lwork=lwork,overwrite_a=1) if info < 0: raise ValueError("illegal value in %-th argument of internal gorgqr" % -info) if pivoting: return Q, R, jpvt return Q, R