コード例 #1
0
la.print_diagram()
lb.print_diagram()
#print(la)
#print(lb)

## Evov:
Elast = 0
for i in range(10000):

    A.set_labels([-1,0,-2])
    B.set_labels([-3,1,-4])
    la.set_labels([-2,-3])
    lb.set_labels([-4,-5])

    ## contract all
    X = cytnx.Contract(cytnx.Contract(A,la),cytnx.Contract(B,lb))
    #X.print_diagram()
    lb.set_label(1,new_label=-1)
    X = cytnx.Contract(lb,X)

    ## X =
    #           (0)  (1)
    #            |    |     
    #  (-4) --lb-A-la-B-lb-- (-5) 
    #
    #X.print_diagram()

    Xt = X.clone()

    ## calculate norm and energy for this step
    # Note that X,Xt contract will result a rank-0 tensor, which can use item() toget element
コード例 #2
0
#   -----      -----A[0]---     -----A[1]---
#   |          |     |          |     |
#  ML----     LR[0]--M-----    LR[1]--M-----      ......
#   |          |     |          |     |
#   -----      -----A*[0]--     -----A*[1]--
#
#
# L_AMAH.net file is used to contract the LR[i]
##>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
LR = [None for i in range(Nsites + 1)]
LR[0] = L0
LR[-1] = R0

for p in range(Nsites - 1):
    s, A[p], vt = cytnx.linalg.Svd(A[p])
    A[p + 1] = cytnx.Contract(cytnx.Contract(s, vt), A[p + 1])
    #A[p+1].print_diagram()
    #A[p].print_diagram()
    anet = cytnx.Network("L_AMAH.net")
    anet.PutUniTensors(["L", "A", "A_Conj", "M"],
                       [LR[p], A[p], A[p].Conj(), M],
                       is_clone=False)
    LR[p + 1] = anet.Launch(optimal=True)

_, A[-1] = cytnx.linalg.Svd(A[-1], is_U=True, is_vT=False)  ## last one.

## DMRG sweep
## Now we are ready for sweeping procedure!
##>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Ekeep = []
コード例 #3
0
prevlnZ = 0;
for i in range(Maxiter):
    print(i)


    ## LR:
    #
    #         1           4
    #         |           |
    #     0--cT--2    2--cT2--5
    #         |           |
    #         3           6
    #
    cT2 = cT.clone()
    cT2.set_labels([2,4,5,6])
    cT = cytnx.Contract(cT,cT2)

    ## Now, let's check the dimension growth onto a point where truncation is needed:
    if(cT.shape()[1]*cT.shape()[3]>chi):
        # * if combined bond dimension > chi then:
        # 1) Do Hosvd get only U and D, with it's Ls matrices. 
        cT.permute_([1,4,3,6,0,5],by_label=True)
        U,D,Lu,Ld=cytnx.linalg.Hosvd(cT,[2,2],is_core=False,is_Ls=True)

        # 2) Using Ls matrix to determine if U is used to truncate or D is used to truncate
        if(Lu.get_block_()[chi:].Norm().item() < Ld.get_block_()[chi:].Norm().item()):
            U, D = D,U

        ## truncate, and permute back to the original form:
        #              chi
        #               |
コード例 #4
0
## gates:
eHu = cy.linalg.ExpH(Hu, -tau)
eHd = cy.linalg.ExpH(Hd, -tau)

## iterator:
Eup_old, Edown_old = 0, 0
cov = False
for i in range(maxit):

    ## first do up >>>>>>>>>>>>>>>>>>
    Nup = cy.Network("up.net")
    Nup.PutUniTensors(["A", "B", "C", "L2A", "L2B", "L2C", "eHu", "s1"],
                      [A, B, C, Ls2[0], Ls2[1], Ls2[2], eHu, s1])
    T = Nup.Launch(True)
    Nrm = cy.Contract(T, T).item()
    T /= np.sqrt(Nrm)
    #normalize for numerical stability.
    A, B, C, s1, Ls1[0], Ls1[1], Ls1[2] = cy.linalg.Hosvd(
        T, [2, 2, 2], True, True, [D, D, D])

    ## de-contract Ls'
    Ls2[0].set_labels([-10, A.labels()[0]])
    Ls2[0] = 1. / Ls2[0]
    Ls2[1].set_labels([-11, B.labels()[0]])
    Ls2[1] = 1. / Ls2[1]
    Ls2[2].set_labels([-12, C.labels()[0]])
    Ls2[2] = 1. / Ls2[2]
    A = cy.Contract(Ls2[0], A)
    B = cy.Contract(Ls2[1], B)
    C = cy.Contract(Ls2[2], C)
コード例 #5
0
    #  1) Absorb s into A and put it in shape
    #            -------------
    #           /             \
    #  virt ____|             |____ phys
    #           |             |
    #           |             |____ virt
    #           \             /
    #            -------------
    #  2) Do Svd, and get the growing n+1 right site, and the right singular values sR
    #     [Note] we don't need U!!
    #
    #     --A--s  --B--    =>      --sR--A'  --B--
    #       |       |                    |     |
    #
    A.set_rowrank(1)
    sR, _, A = cytnx.linalg.Svd(cytnx.Contract(A, s1))

    ## rotate right
    #  1) Absorb s into B and put it in shape
    #            -------------
    #           /             \
    #  virt ____|             |____ virt
    #           |             |
    #  phys ____|             |
    #           \             /
    #            -------------
    #  2) Do Svd, and get the growing n+1 left site, and the left singular values sL
    #     [Note] we don't need vT!!
    #
    #     --A--  s--B--    =>      --A--   B'--sL
    #       |       |                |     |