"If unset, all images in the project are used.", default=None) parser.add_argument('--cytomine_id_job') params, _ = parser.parse_known_args(sys.argv[1:]) with Cytomine(params.cytomine_host, params.cytomine_public_key, params.cytomine_private_key) as c: id_tags_for_images = params.cytomine_id_tags_for_images id_project = params.cytomine_id_project image_tags = id_tags_for_images if id_tags_for_images else None images = ImageInstanceCollection(tags=image_tags).fetch_with_filter( "project", id_project) image_ids = [image.id for image in images] groundtruths = AnnotationCollection() groundtruths.showTerm = True groundtruths.showWKT = True groundtruths.images = image_ids groundtruths.fetch() predictions = AnnotationCollection() predictions.showTerm = True predictions.showWKT = True predictions.images = image_ids predictions.job = params.cytomine_id_job predictions.fetch() print("There are {} groundtruths and {} predictions".format( len(groundtruths), len(predictions)))
def main(argv): with CytomineJob.from_cli(argv) as conn: # with Cytomine(argv) as conn: print(conn.parameters) conn.job.update(status=Job.RUNNING, progress=0, statusComment="Initialization...") base_path = "{}".format(os.getenv("HOME")) # Mandatory for Singularity working_path = os.path.join(base_path, str(conn.job.id)) # with Cytomine(host=params.host, public_key=params.public_key, private_key=params.private_key, # verbose=logging.INFO) as cytomine: # ontology = Ontology("classPNcells"+str(conn.parameters.cytomine_id_project)).save() # ontology_collection=OntologyCollection().fetch() # print(ontology_collection) # ontology = Ontology("CLASSPNCELLS").save() # terms = TermCollection().fetch_with_filter("ontology", ontology.id) terms = TermCollection().fetch_with_filter( "project", conn.parameters.cytomine_id_project) conn.job.update(status=Job.RUNNING, progress=1, statusComment="Terms collected...") print(terms) # term_P = Term("PositiveCell", ontology.id, "#FF0000").save() # term_N = Term("NegativeCell", ontology.id, "#00FF00").save() # term_P = Term("PositiveCell", ontology, "#FF0000").save() # term_N = Term("NegativeCell", ontology, "#00FF00").save() # Get all the terms of our ontology # terms = TermCollection().fetch_with_filter("ontology", ontology.id) # terms = TermCollection().fetch_with_filter("ontology", ontology) # print(terms) # #Loading pre-trained Stardist model # np.random.seed(17) # lbl_cmap = random_label_cmap() # #Stardist H&E model downloaded from https://github.com/mpicbg-csbd/stardist/issues/46 # #Stardist H&E model downloaded from https://drive.switch.ch/index.php/s/LTYaIud7w6lCyuI # model = StarDist2D(None, name='2D_versatile_HE', basedir='/models/') #use local model file in ~/models/2D_versatile_HE/ #Select images to process images = ImageInstanceCollection().fetch_with_filter( "project", conn.parameters.cytomine_id_project) conn.job.update(status=Job.RUNNING, progress=2, statusComment="Images gathered...") list_imgs = [] if conn.parameters.cytomine_id_images == 'all': for image in images: list_imgs.append(int(image.id)) else: list_imgs = [ int(id_img) for id_img in conn.parameters.cytomine_id_images.split(',') ] print(list_imgs) #Go over images conn.job.update(status=Job.RUNNING, progress=10, statusComment="Running PN classification on image...") #for id_image in conn.monitor(list_imgs, prefix="Running PN classification on image", period=0.1): for id_image in list_imgs: roi_annotations = AnnotationCollection() roi_annotations.project = conn.parameters.cytomine_id_project roi_annotations.term = conn.parameters.cytomine_id_cell_term roi_annotations.image = id_image #conn.parameters.cytomine_id_image roi_annotations.job = conn.parameters.cytomine_id_annotation_job roi_annotations.user = conn.parameters.cytomine_id_user_job roi_annotations.showWKT = True roi_annotations.fetch() print(roi_annotations) #Go over ROI in this image #for roi in conn.monitor(roi_annotations, prefix="Running detection on ROI", period=0.1): for roi in roi_annotations: #Get Cytomine ROI coordinates for remapping to whole-slide #Cytomine cartesian coordinate system, (0,0) is bottom left corner print( "----------------------------Cells------------------------------" ) roi_geometry = wkt.loads(roi.location) # print("ROI Geometry from Shapely: {}".format(roi_geometry)) # print("ROI Bounds") # print(roi_geometry.bounds) minx = roi_geometry.bounds[0] miny = roi_geometry.bounds[3] #Dump ROI image into local PNG file # roi_path=os.path.join(working_path,str(roi_annotations.project)+'/'+str(roi_annotations.image)+'/'+str(roi.id)) roi_path = os.path.join( working_path, str(roi_annotations.project) + '/' + str(roi_annotations.image) + '/') # print(roi_path) roi_png_filename = os.path.join(roi_path + str(roi.id) + '.png') conn.job.update(status=Job.RUNNING, progress=20, statusComment=roi_png_filename) # print("roi_png_filename: %s" %roi_png_filename) roi.dump(dest_pattern=roi_png_filename, alpha=True) #roi.dump(dest_pattern=os.path.join(roi_path,"{id}.png"), mask=True, alpha=True) # im=Image.open(roi_png_filename) J = cv2.imread(roi_png_filename, cv2.IMREAD_UNCHANGED) J = cv2.cvtColor(J, cv2.COLOR_BGRA2RGBA) [r, c, h] = J.shape # print("J: ",J) if r < c: blocksize = r else: blocksize = c # print("blocksize:",blocksize) rr = np.zeros((blocksize, blocksize)) cc = np.zeros((blocksize, blocksize)) zz = [*range(1, blocksize + 1)] # print("zz:", zz) for i in zz: rr[i - 1, :] = zz # print("rr shape:",rr.shape) zz = [*range(1, blocksize + 1)] for i in zz: cc[:, i - 1] = zz # print("cc shape:",cc.shape) cc1 = np.asarray(cc) - 16.5 rr1 = np.asarray(rr) - 16.5 cc2 = np.asarray(cc1)**2 rr2 = np.asarray(rr1)**2 rrcc = np.asarray(cc2) + np.asarray(rr2) weight = np.sqrt(rrcc) # print("weight: ",weight) weight2 = 1. / weight # print("weight2: ",weight2) # print("weight2 shape:",weight2.shape) coord = [c / 2, r / 2] halfblocksize = blocksize / 2 y = round(coord[1]) x = round(coord[0]) # Convert the RGB image to HSV Jalpha = J[:, :, 3] Jalphaloc = Jalpha / 255 Jrgb = cv2.cvtColor(J, cv2.COLOR_RGBA2RGB) Jhsv = cv2.cvtColor(Jrgb, cv2.COLOR_RGB2HSV_FULL) Jhsv = Jhsv / 255 Jhsv[:, :, 0] = Jhsv[:, :, 0] * Jalphaloc Jhsv[:, :, 1] = Jhsv[:, :, 1] * Jalphaloc Jhsv[:, :, 2] = Jhsv[:, :, 2] * Jalphaloc # print("Jhsv: ",Jhsv) # print("Jhsv size:",Jhsv.shape) # print("Jhsv class:",Jhsv.dtype) currentblock = Jhsv[0:blocksize, 0:blocksize, :] # print("currentblock: ",currentblock) # print(currentblock.dtype) currentblockH = currentblock[:, :, 0] currentblockV = 1 - currentblock[:, :, 2] hue = sum(sum(currentblockH * weight2)) val = sum(sum(currentblockV * weight2)) # print("hue:", hue) # print("val:", val) if hue < 2: cellclass = 1 elif val < 15: cellclass = 2 else: if hue < 30 or val > 40: cellclass = 1 else: cellclass = 2 # tags = TagCollection().fetch() # tags = TagCollection() # print(tags) if cellclass == 1: # print("Positive (H: ", str(hue), ", V: ", str(val), ")") id_terms = conn.parameters.cytomine_id_positive_term # tag = Tag("Positive (H: ", str(hue), ", V: ", str(val), ")").save() # print(tag) # id_terms=Term("PositiveCell", ontology.id, "#FF0000").save() elif cellclass == 2: # print("Negative (H: ", str(hue), ", V: ", str(val), ")") id_terms = conn.parameters.cytomine_id_negative_term # for t in tags: # tag = Tag("Negative (H: ", str(hue), ", V: ", str(val), ")").save() # print(tag) # id_terms=Term("NegativeCell", ontology.id, "#00FF00").save() # First we create the required resources cytomine_annotations = AnnotationCollection() # property_collection = PropertyCollection(uri()).fetch("annotation",id_image) # property_collection = PropertyCollection().uri() # print(property_collection) # print(cytomine_annotations) # property_collection.append(Property(Annotation().fetch(id_image), key="Hue", value=str(hue))) # property_collection.append(Property(Annotation().fetch(id_image), key="Val", value=str(val))) # property_collection.save() # prop1 = Property(Annotation().fetch(id_image), key="Hue", value=str(hue)).save() # prop2 = Property(Annotation().fetch(id_image), key="Val", value=str(val)).save() # prop1.Property(Annotation().fetch(id_image), key="Hue", value=str(hue)).save() # prop2.Property(Annotation().fetch(id_image), key="Val", value=str(val)).save() # for pos, polygroup in enumerate(roi_geometry,start=1): # points=list() # for i in range(len(polygroup[0])): # p=Point(minx+polygroup[1][i],miny-polygroup[0][i]) # points.append(p) annotation = roi_geometry # tags.append(TagDomainAssociation(Annotation().fetch(id_image, tag.id))).save() # association = append(TagDomainAssociation(Annotation().fetch(id_image, tag.id))).save() # print(association) cytomine_annotations.append( Annotation( location=annotation.wkt, #location=roi_geometry, id_image=id_image, #conn.parameters.cytomine_id_image, id_project=conn.parameters.cytomine_id_project, id_terms=[id_terms])) print(".", end='', flush=True) #Send Annotation Collection (for this ROI) to Cytomine server in one http request ca = cytomine_annotations.save() conn.job.update(status=Job.TERMINATED, progress=100, statusComment="Finished.")