def create_cfg_from_cli_args(args, default_cfg): """ Instead of loading from defaults.py, this binary only includes necessary configs building from scratch, and overrides them from args. There're two levels of config: _C: the config system used by this binary, which is a sub-set of training config, override by configurable_cfg. It can also be override by args.opts for convinience. configurable_cfg: common configs that user should explicitly specify in the args. """ _C = CN() _C.INPUT = default_cfg.INPUT _C.DATASETS = default_cfg.DATASETS _C.DATALOADER = default_cfg.DATALOADER _C.TEST = default_cfg.TEST if hasattr(default_cfg, "D2GO_DATA"): _C.D2GO_DATA = default_cfg.D2GO_DATA if hasattr(default_cfg, "TENSORBOARD"): _C.TENSORBOARD = default_cfg.TENSORBOARD # NOTE configs below might not be necessary, but must add to make code work _C.MODEL = CN() _C.MODEL.META_ARCHITECTURE = default_cfg.MODEL.META_ARCHITECTURE _C.MODEL.MASK_ON = default_cfg.MODEL.MASK_ON _C.MODEL.KEYPOINT_ON = default_cfg.MODEL.KEYPOINT_ON _C.MODEL.LOAD_PROPOSALS = default_cfg.MODEL.LOAD_PROPOSALS assert _C.MODEL.LOAD_PROPOSALS is False, "caffe2 model doesn't support" _C.OUTPUT_DIR = args.output_dir configurable_cfg = [ "DATASETS.TEST", args.datasets, "INPUT.MIN_SIZE_TEST", args.min_size, "INPUT.MAX_SIZE_TEST", args.max_size, ] cfg = _C.clone() cfg.merge_from_list(configurable_cfg) cfg.merge_from_list(args.opts) return cfg
def get_default_config(): cfg = CfgNode() cfg.D2GO_DATA = CfgNode() cfg.D2GO_DATA.AUG_OPS = CfgNode() return cfg