class GroupUpHyperparameter(hyperparams.Hyperparams): verbose = UniformBool(default=False, semantic_types=['http://schema.org/Boolean', 'https://metadata.datadrivendiscovery.org/types/ControlParameter']) use_columns = hyperparams.Set( elements=hyperparams.Hyperparameter[int](-1), default=(), semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="A set of column indices to force primitive to operate on. If any specified column cannot be parsed, it is skipped.", ) # exclude_columns = hyperparams.Set( # elements=hyperparams.Hyperparameter[int](-1), # default=(), # semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], # description="A set of column indices to not operate on. Applicable only if \"use_columns\" is not provided.", # ) return_result = hyperparams.Enumeration( values=['append', 'replace', 'new'], default='replace', semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Should parsed columns be appended, should they replace original columns, or should only parsed columns be returned? This hyperparam is ignored if use_semantic_types is set to false.", ) # use_semantic_types = hyperparams.UniformBool( # default=False, # semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], # description="Controls whether semantic_types metadata will be used for filtering columns in input dataframe. Setting this to false makes the code ignore return_result and will produce only the output dataframe" # ) add_index_columns = hyperparams.UniformBool( default=True, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Also include primary index columns if input data has them. Applicable only if \"return_result\" is set to \"new\".", )
class MiceHyperparameter(Hyperparams): verbose = UniformBool( default=False, semantic_types=[ 'http://schema.org/Boolean', 'https://metadata.datadrivendiscovery.org/types/ControlParameter' ])
class EncHyperparameter(hyperparams.Hyperparams): text2int = UniformBool( default=False, description= 'Whether to convert everything to numerical. For text columns, each row may get converted into a column', semantic_types=[ 'http://schema.org/Boolean', 'https://metadata.datadrivendiscovery.org/types/ControlParameter' ]) n_limit = UniformInt( lower=5, upper=100, default=12, description='Limits the maximum number of columns to generate', semantic_types=[ 'http://schema.org/Integer', 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) categorical_features = Enumeration( values=['95in10'], default='95in10', description='rule to declare categorical', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/ControlParameter' ])
class KnnHyperparameter(Hyperparams): # A reasonable upper bound would the size of the input. For now using 100. k = UniformInt(lower=1, upper=100, default=5, description='Number of neighbors', semantic_types=['http://schema.org/Integer', 'https://metadata.datadrivendiscovery.org/types/TuningParameter']) verbose = UniformBool(default=False, semantic_types=['http://schema.org/Boolean', 'https://metadata.datadrivendiscovery.org/types/ControlParameter'])
class EchoRegressor_Hyperparams(hyperparams.Hyperparams): # regularization strength alpha = Uniform( lower=0, upper=10, default=1, q=.1, description='regularization strength', semantic_types=[ "http://schema.org/Float", 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) # diagonal = UniformBool( default=False, description= 'assume diagonal covariance, leading to sparsity in data basis (instead of covariance eigenbasis)', semantic_types=[ "http://schema.org/Integer", 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ])
class EchoIB_Hyperparams(hyperparams.Hyperparams): n_hidden = UniformInt( lower=1, upper=401, default=200, description='number of hidden factors learned', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) beta = Uniform( lower=0, upper=1000, default=.1, q=.01, description= 'Lagrange multiplier for beta (applied to regularizer I(X:Z)): defining tradeoff btwn label relevance : compression.', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) epochs = UniformInt( lower=1, upper=10000, default=100, description='number of epochs to train', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) batch = UniformInt( lower=10, upper=1000, default=50, description='batch_size', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) lr = LogUniform( lower=0.00001, upper=0.101, default=0.001, description='learning rate for Adam optimization', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) activation = Enumeration( values=['relu', 'tanh', 'elu'], default='tanh', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/ControlParameter' ], description="activation to use for intermediate activations") convolutional = UniformBool( default=False, semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/ControlParameter' ], description="whether to use a convolutional architecture") task = Enumeration( values=['CLASSIFICATION', 'REGRESSION'], default='CLASSIFICATION', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/ControlParameter' ], description='task type') use_as_modeling = UniformBool( default=False, semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/ControlParameter' ], description= "whether to return constructed features AND predictions (else, used for modeling i.e. only predictions" ) units = UniformInt( lower=10, upper=401, default=200, description='# neurons in FC intermediate layers', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) layers = UniformInt( lower=1, upper=8, default=2, description='# of layers', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) error_on_no_input = hyperparams.UniformBool( default=True, semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/ControlParameter' ], description= "Throw an exception if no input column is selected/provided. Defaults to true to behave like sklearn. To prevent pipelines from breaking set this to False." ) gpus = Uniform( lower=0, upper=5, q=1, default=1, semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/ResourcesUseParameter' ], description='GPUs to Use')
class SDNE_Hyperparams(hyperparams.Hyperparams): dimension = UniformInt( lower=10, upper=200, default=10, #q = 5, description='dimension of latent embedding', semantic_types=[ "http://schema.org/Integer", 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) epochs = UniformInt( lower=1, upper=500, default=50, #q = 5e-8, description='number of epochs to train', semantic_types=[ "http://schema.org/Integer", 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) beta = UniformInt( lower=1, upper=20, default=5, #q = 1, description= 'seen edge reconstruction weight (to account for sparsity in links for reconstructing adjacency. matrix B in Wang et al 2016', semantic_types=[ "http://schema.org/Integer", 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) alpha = Uniform( lower=1e-8, upper=1, default=1e-5, #q = 5e-8, description='first order proximity weight', semantic_types=[ "http://schema.org/Integer", 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) lr = Uniform( lower=1e-5, upper=1e-2, default=5e-4, #q = 5e-8, description='learning rate (constant across training)', semantic_types=[ "http://schema.org/Integer", 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ]) depth = UniformInt( lower=1, upper=10, default=3, #q = 5, description='number of hidden layers', semantic_types=[ "http://schema.org/Integer", 'https://metadata.datadrivendiscovery.org/types/ControlParameter' ]) return_list = UniformBool( default=False, description='for testing', semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter' ])