コード例 #1
0
ファイル: transform_try.py プロジェクト: fengggli/assaydata
def do_transform(train_path, test_path, new_train_path, new_test_path,
                 pickle_path, model_path, pecent_encode, my_training_epochs,
                 mysample_mathod, encode_function):
    # left is the left part besides the feature matrix
    matrix_train, train_left, train_right = file2matrix(train_path)
    matrix_test, test_left, test_right = file2matrix(test_path)

    dim_in = max(matrix_train.shape[1], matrix_test.shape[1])
    extra_col = 0

    # the dimension of two sparse matrix may be different
    if dim_in > matrix_train.shape[1]:
        extra_col = dim_in - matrix_train.shape[1]
        matrix_train = np.hstack((matrix_train,
                                  np.zeros((matrix_train.shape[0], extra_col),
                                           dtype=int)))

    if dim_in > matrix_test.shape[1]:
        extra_col = dim_in - matrix_test.shape[1]
        matrix_test = np.hstack(
            (matrix_test, np.zeros((matrix_test.shape[0], extra_col),
                                   dtype=int)))

    #[matrix_train_sampled, matrix_test_sampled] = get_sampled(matrix_train, matrix_test, 0.01)

    # save the trainset and test set (which will be used by dA module)
    f = gzip.open(pickle_path, 'w')
    cPickle.dump([matrix_train, matrix_test], f)
    f.close()

    dim_out = int(dim_in * pecent_encode)
    print 'before sampling', matrix_train.shape, matrix_test.shape, 'mapped to dim_out = ', dim_out

    matrix_train_new, matrix_test_new = dA.test_dA(
        0,
        dim_in,
        dim_out,
        learning_rate=0.1,
        training_epochs=my_training_epochs,
        dataset=pickle_path,
        batch_size=10,
        output_path=model_path,
        sample_method=mysample_mathod,
        encode_function=encode_function)

    matrix2file(matrix_train_new, train_left, train_right, new_train_path)
    matrix2file(matrix_test_new, test_left, test_right, new_test_path)
    print 'encoded file written'
コード例 #2
0
ファイル: transform_try.py プロジェクト: lifenggg/assaydata
def do_transform(train_path, test_path, new_train_path, new_test_path, pickle_path, model_path, pecent_encode,my_training_epochs, mysample_mathod, encode_function):
    # left is the left part besides the feature matrix
    matrix_train, train_left, train_right= file2matrix(train_path)
    matrix_test, test_left, test_right = file2matrix(test_path)





    dim_in = max(matrix_train.shape[1], matrix_test.shape[1])
    extra_col = 0

    # the dimension of two sparse matrix may be different
    if dim_in > matrix_train.shape[1]:
        extra_col = dim_in - matrix_train.shape[1]
        matrix_train = np.hstack((matrix_train, np.zeros((matrix_train.shape[0], extra_col), dtype=int)))

    if dim_in > matrix_test.shape[1]:
        extra_col = dim_in - matrix_test.shape[1]
        matrix_test = np.hstack((matrix_test, np.zeros((matrix_test.shape[0], extra_col), dtype= int)))
        
    #[matrix_train_sampled, matrix_test_sampled] = get_sampled(matrix_train, matrix_test, 0.01)


    # save the trainset and test set (which will be used by dA module)
    f = gzip.open(pickle_path, 'w')
    cPickle.dump([matrix_train, matrix_test], f)
    f.close()


    dim_out = int(dim_in*pecent_encode)
    print 'before sampling', matrix_train.shape, matrix_test.shape, 'mapped to dim_out = ', dim_out

    matrix_train_new, matrix_test_new = dA.test_dA(0, dim_in, dim_out, learning_rate=0.1, training_epochs=my_training_epochs,dataset=pickle_path, batch_size=10, output_path=model_path, sample_method=mysample_mathod, encode_function=encode_function)

    matrix2file(matrix_train_new, train_left, train_right, new_train_path)
    matrix2file(matrix_test_new, test_left, test_right, new_test_path)
    print 'encoded file written'
コード例 #3
0
def test_dA():
    dA.test_dA(training_epochs=1, output_folder='tmp_dA_plots')
コード例 #4
0
def test_dA():
    dA.test_dA(training_epochs=1, output_folder='tmp_dA_plots')
コード例 #5
0
ファイル: test.py プロジェクト: JakeMick/kaggle
def test_dA():
    dA.test_dA(training_epochs=3, output_folder="tmp_dA_plots")
コード例 #6
0
def test_dA():
    t0 = time.time()
    dA.test_dA(training_epochs=3, output_folder='tmp_dA_plots')
    print >> sys.stderr, "test_dA took %.3fs expected Xs in our buildbot" % (
        time.time() - t0)
コード例 #7
0
def test_dA():
    t0=time.time()
    dA.test_dA(training_epochs = 3, output_folder = 'tmp_dA_plots')
    print >> sys.stderr, "test_dA took %.3fs expected Xs in our buildbot"%(time.time()-t0)
コード例 #8
0
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 27 01:04:40 2016

@author: bo

run and save a dA model, to initialize my deep_clus model
"""

import dA

dA.test_dA()