コード例 #1
0
def test_zashitim_taigu_noconfirm(post_id, new_lib=False):
    casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846',
                             base_dir='D:/BigData/Charity/Cascades/')
    casman.load_from_file()
    cascade = casman.get_cascade_by_id(post_id)
    min_delay = cascade.get_minimum_delay()
    #outcome = cascade.get_outcome(normalization_factor=min_delay)
    outcome = cascade.get_outcome(normalization_factor=3600)
    counters = casman.underlying_net.counters_meta
    print(casman.get_underlying_path())
    tmax = max(outcome.values())
    tmax *= 1.5
    if new_lib:
        est.set_diffusion_data_newlib(casman.get_underlying_path(),
                                      outcome=outcome,
                                      observe_time=tmax)
        print('Max: ' + str(
            est.llmax_for_diffusion_noconfirm(
                8.65381982e-04, 3.07426738e-08, 1.53208126e-07, new_lib=True)))
    else:
        est.set_diffusion_data(casman.get_underlying_path(),
                               counters=counters,
                               outcome=outcome)
        print('Max: ' + str(
            est.llmax_for_diffusion_noconfirm(1.41127581e-03,
                                              1.07595601e-10,
                                              2.65026813e-07,
                                              observe_time=tmax)))
コード例 #2
0
def test_zashitim_taigu_ICM_compare(post_id):
    casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846',
                             base_dir='D:/BigData/Charity/Cascades/')
    casman.load_from_file()
    cascades = []
    tmaxs = []
    cascade = casman.get_cascade_by_id(post_id)
    outcome_old = cascade.get_outcome(normalization_factor=3600)
    outcome = cascade.get_outcome_connected_only(
        casman.underlying_net.network.nodes, normalization_factor=3600)
    print("Outcome total size: " + str(len(outcome_old)))
    print("Outcome giant size: " + str(len(outcome)))
    print(outcome)
    print(casman.get_underlying_path())

    tmax = max(outcome.values())
    tmax *= 1.5

    est.set_diffusion_data_newlib(casman.get_underlying_path(),
                                  outcome=outcome,
                                  observe_time=tmax)
    #est.set_alpha_for_node(-164443025, 30)
    result1 = est.llmax_for_diffusion_SI_decay(1.49969075e-05, 1.34657003e-02)
    #result1 = est.llmax_for_diffusion_SI_decay(1.49969075e-05, 0.03545553788287585, fixed_delta=True)
    print(result1)
    result2 = est.llmax_for_diffusion_ICM(0.001)
    print(result2)
    print("1-exp(theta/delta): " +
          str(1. - math.exp(-result1['theta'] / result1['decay'])))
    #print("1-exp(theta/delta): " + str(1. - math.exp(-result1['theta'] / 0.03545553788287585)))
    print("ICM p: " + str(result2['theta']))
コード例 #3
0
def test_zashitim_taigu_confirm_multiple(post_ids=None):
    casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846',
                             base_dir='D:/BigData/Charity/Cascades/')
    casman.load_from_file()
    cascades = []
    outcomes = []
    tmaxs = []
    if post_ids is None:
        cascades = casman.cascades
    else:
        for post_id in post_ids:
            cascades.append(casman.get_cascade_by_id(post_id))
    for cascade in cascades:
        outcome = cascade.get_outcome(normalization_factor=3600)
        print(len(outcome))
        outcomes.append(outcome)
        tmaxs.append(1.5 * max(outcome.values()))
    return
    print(casman.get_underlying_path())
    est.set_diffusion_data_ensemble_newlib(casman.get_underlying_path(),
                                           outcomes=outcomes,
                                           observe_times=tmaxs)
    thetas0 = [2.0334495598850714e-05 for i in range(len(outcomes))]
    relics0 = [1.1620706275554255e-08 for i in range(len(outcomes))]
    confirms0 = [0. for i in range(len(outcomes))]
    #thetas0 = [6.640777840198647e-05, 2.0334495598850714e-05, 2.4494338855225353e-05]
    #relics0 = [1.1620706275554255e-08, 1.8733700717464615e-08, 3.811750042715803e-08]
    print('Max: ' + str(
        est.llmax_for_diffusion_confirm_multiple_cases(
            thetas0=thetas0,
            decay0=0.03688237209138165,
            relics0=relics0,
            confirms0=confirms0)))
コード例 #4
0
def simulate_diffusion_cascades_zashitim_taigu(n_cascades, theta, rho, delta):
    casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846',
                             base_dir='D:/BigData/Charity/Cascades/')
    casman.load_from_file()
    cascade = casman.get_cascade_by_id(6846)
    print(cascade.get_minimum_delay())
    print(max(cascade.get_outcome(normalization_factor=3600).values()))
    est.set_alpha_for_node(-164443025, 25)
    outcome = Simulator.simulate_SI_decay_confirm_relicexp_hetero(
        casman.underlying_net.network,
        theta,
        delta,
        .0,
        rho,
        infected={-164443025},
        tmax=2500.,
        dt=30,
        echo=True)
    print(outcome)
コード例 #5
0
def test_zashitim_taigu_confirm(post_id):
    casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846',
                             base_dir='D:/BigData/Charity/Cascades/')
    casman.load_from_file()
    cascade = casman.get_cascade_by_id(post_id)
    min_delay = cascade.get_minimum_delay()
    outcome = cascade.get_outcome(normalization_factor=min_delay)
    counters = casman.underlying_net.counters_meta
    print(casman.get_underlying_path())
    est.set_diffusion_data(casman.get_underlying_path(),
                           counters=counters,
                           outcome=outcome)
    print('Max: ' + str(
        est.llmax_for_diffusion(1.00019217e-6, 3.61779381e-01, 4.07895457e-03,
                                1.24224204e-07)))
コード例 #6
0
def test_zashitim_taigu_noconfirm_converge(post_id, delta, steps=10):
    casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846',
                             base_dir='D:/BigData/Charity/Cascades/')
    casman.load_from_file()
    cascade = casman.get_cascade_by_id(post_id)
    outcome = cascade.get_outcome(normalization_factor=3600)
    print(casman.get_underlying_path())
    tmax = max(outcome.values())
    tmax *= 1.5
    delta_t = tmax / (20 * steps + 1)
    thetas = []
    rhos = []
    lengths = []
    thetasICM = []
    rhosICM = []
    print(outcome)
    for i in range(steps):
        t = delta_t * (i + 1)
        new_outcome = {}
        for k, v in outcome.items():
            if v <= t:
                new_outcome[k] = v
        print("T: ", t)
        print("Outcome length: ", len(new_outcome))
        est.set_diffusion_data_newlib(casman.get_underlying_path(),
                                      outcome=new_outcome,
                                      observe_time=t)
        #est.set_alpha_for_node(-164443025, 15)
        result = est.llmax_for_diffusion_SI_relic(6.102733267373096e-05,
                                                  1.2196174044195352e-08,
                                                  delta=delta,
                                                  new_lib=True)
        thetas.append(result['theta'])
        rhos.append(result['relic'])
        result2 = est.llmax_for_diffusion_ICM(0.0011, 0.0000011)
        thetasICM.append(result2['theta'])
        rhosICM.append(result2['relic'])
        lengths.append(len(new_outcome))
        print(thetas)
        print(rhos)
        print(lengths)
        print(thetasICM)
        print(rhosICM)
コード例 #7
0
def test_zashitim_taigu_dlldthetas(post_id, theta, decay, relic):
    casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846',
                             base_dir='D:/BigData/Charity/Cascades/')
    casman.load_from_file()
    cascade = casman.get_cascade_by_id(post_id)
    min_delay = cascade.get_minimum_delay()
    outcome = cascade.get_outcome(normalization_factor=min_delay)
    counters = casman.underlying_net.counters_meta
    print(casman.get_underlying_path())
    est.set_diffusion_data(casman.get_underlying_path(),
                           counters=counters,
                           outcome=outcome)
    dlldthetas = est.dlldthetas_noconfirm(theta, decay, relic, outcome.keys())
    cascade.network.add_node_attribute('dth', 'dLL_dTheta', 'float')
    for k, v in dlldthetas.items():
        cascade.network.add_meta_for_node(k, {'dth': v})
    cascade.network.export_gexf(
        'D:/BigData/Charity/Cascades/Zashitim_taigu_-164443025_' +
        str(post_id) + '_dlldth.gexf')
    show_dlldthetas(dlldthetas)
コード例 #8
0
def test_zashitim_taigu_noconfirm_theta_graph(post_id, decay, relic):
    casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846',
                             base_dir='D:/BigData/Charity/Cascades/')
    casman.load_from_file()
    cascade = casman.get_cascade_by_id(post_id)
    min_delay = cascade.get_minimum_delay()
    outcome = cascade.get_outcome(normalization_factor=min_delay)
    counters = casman.underlying_net.counters_meta
    print(casman.get_underlying_path())
    est.set_diffusion_data(casman.get_underlying_path(),
                           counters=counters,
                           outcome=outcome)

    print(outcome)
    tmax = max(outcome.values())
    tmax *= 1.5

    thetas = np.arange(1e-9, 1e-6, 1e-8)
    lls = np.zeros(len(thetas))
    maxll = -999999999999999999.
    for i in range(len(thetas)):
        lls[i] = -est.loglikelyhood_noconfirm([thetas[i], decay, relic],
                                              observe_time=tmax)
        print(str(i) + ' - ' + str(lls[i]))
        if (maxll < lls[i]):
            maxll = lls[i]
    maxll -= 300
    for i in range(len(thetas)):
        lls[i] = lls[i] - maxll
        print(lls[i])
        if lls[i] < 0:
            lls[i] = 0
        else:
            lls[i] = math.exp(lls[i])
    plt.plot(thetas, lls)
    plt.show()
コード例 #9
0
        return self.libr.DADSLogLikelyhoodByNodeTheta(node_theta, node_id,
                                                      theta, confirm, decay,
                                                      relic, observe_time)

    def thetas_derivatives(self, theta, confirm, decay, relic, ids,
                           observe_time):
        self.libr.DADSCalculateDerivatives(theta, confirm, decay, relic,
                                           observe_time)
        derivatives = {}
        for id in ids:
            derivatives[id] = self.libr.DADSDLogLikelyhoodDthetaForId(id)
        return derivatives


if __name__ == '__main__':
    casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846',
                             base_dir='D:/BigData/Charity/Cascades/')
    casman.load_from_file()
    cascade = casman.get_cascade_by_id(8726)
    min_delay = cascade.get_minimum_delay()
    outcome = cascade.get_outcome(normalization_factor=min_delay)
    counters = casman.underlying_net.counters_meta

    estmtr = DiffusionEstimator(True)
    estmtr.load_network(
        'D:/BigData/Charity/Cascades/Zashitim_taigu_-164443025_8726_8021_6846u_network.dos',
        counters, outcome)
    for i in range(10):
        ll = estmtr.loglikelyhood(0.0000001, 0.5, 0.00001, 0.00000001)
        print(str(i) + '  ' + str(ll))

#150437823 28082048 519339743
コード例 #10
0
# Created by Gubanov Alexander (aka Derzhiarbuz) at 05.06.2019
# Contacts: [email protected]

from da_icascades_manager import CascadesManager
from da_information_conductivity import InformationConductivity
import numpy as np
import matplotlib.pylab as pl

casman = CascadesManager(name='WorldVita',
                         base_dir='D:/BigData/Charity/Cascades/')
casman.load_from_file()
casman.update_cascades(uselikes=False, usehiddens=False)

cond_net = InformationConductivity()
cond_net.make_cascades_summary(casman.cascades, logweight=False)
cond_net.make_underlying_summary([casman.underlying_net])
# print(cond_net.cascades_network.links)
# print(cond_net.cascades_network.nodes)
# print(cond_net.cascades_network.nodes_attributes)
# print(len(cond_net.underlying.nodes))
# cond_net.cascades_network.export_gexf('D:/BigData/Charity/Cascades/PomogatLegko100Summary.gexf', drop_singletones=True)

summary = cond_net.nodes_summary()
print(summary['in'])
print(len(summary['in']))
print(summary['out'])
print(len(summary['out']))
print(summary['in_w'])
print(len(summary['in_w']))
print(summary['out_w'])
print(len(summary['out_w']))