コード例 #1
0
    def apply(self, sdfg: SDFG):
        state = sdfg.node(self.state_id)
        map_entry = self.map_entry(sdfg)
        map_exit = state.exit_node(map_entry)
        current_map = map_entry.map

        # Expand the innermost map if multidimensional
        if len(current_map.params) > 1:
            ext, rem = dace.transformation.helpers.extract_map_dims(
                sdfg, map_entry, list(range(len(current_map.params) - 1)))
            map_entry = rem
            map_exit = state.exit_node(map_entry)
            current_map = map_entry.map

        subgraph = state.scope_subgraph(map_entry)
        subgraph_contents = state.scope_subgraph(map_entry,
                                                 include_entry=False,
                                                 include_exit=False)

        # Set the schedule
        current_map.schedule = dace.dtypes.ScheduleType.SVE_Map

        # Infer all connector types and apply them
        inferred = infer_types.infer_connector_types(sdfg, state, subgraph)
        infer_types.apply_connector_types(inferred)

        # Infer vector connectors and AccessNodes and apply them
        vector_inference.infer_vectors(
            sdfg,
            state,
            map_entry,
            util.SVE_LEN,
            flags=vector_inference.VectorInferenceFlags.Allow_Stride,
            apply=True)
コード例 #2
0
    def apply(self, sdfg: SDFG):
        nsdfg: nodes.NestedSDFG = self.nsdfg(sdfg)
        state = sdfg.node(self.state_id)

        new_state = sdfg.add_state_before(state)
        isedge = sdfg.edges_between(new_state, state)[0]

        # Find relevant symbol mapping
        mapping: Dict[str, str] = {}
        mapping.update({k: str(v) for k, v in nsdfg.symbol_mapping.items()})
        mapping.update({
            k: next(iter(state.in_edges_by_connector(nsdfg, k))).data.data
            for k in nsdfg.in_connectors
        })

        nisedge = nsdfg.sdfg.edges()[0]
        # Safe replacement of edge contents
        for k, v in mapping.items():
            nisedge.data.replace(k, '__dacesym_' + k, replace_keys=False)
        for k, v in mapping.items():
            nisedge.data.replace('__dacesym_' + k, v, replace_keys=False)

        for akey, aval in nisedge.data.assignments.items():
            # Map assignment to outer edge
            if akey not in sdfg.symbols and akey not in sdfg.arrays:
                newname = akey
            else:
                newname = nsdfg.label + '_' + akey

            isedge.data.assignments[newname] = aval

            # Add symbol to outer SDFG
            sdfg.add_symbol(newname, nsdfg.sdfg.symbols[akey])

            # Add symbol mapping to nested SDFG
            nsdfg.symbol_mapping[akey] = newname

        isedge.data.condition = nisedge.data.condition

        # Clean nested SDFG
        nsdfg.sdfg.remove_node(nisedge.src)
コード例 #3
0
ファイル: state_elimination.py プロジェクト: sscholbe/dace
    def apply(self, sdfg: SDFG):
        nsdfg: nodes.NestedSDFG = self.nsdfg(sdfg)
        state = sdfg.node(self.state_id)

        new_state = sdfg.add_state_before(state)
        isedge = sdfg.edges_between(new_state, state)[0]

        # Find relevant symbol and data descriptor mapping
        mapping: Dict[str, str] = {}
        mapping.update({k: str(v) for k, v in nsdfg.symbol_mapping.items()})
        mapping.update({
            k: next(iter(state.in_edges_by_connector(nsdfg, k))).data.data
            for k in nsdfg.in_connectors
        })
        mapping.update({
            k: next(iter(state.out_edges_by_connector(nsdfg, k))).data.data
            for k in nsdfg.out_connectors
        })

        # Get internal state and interstate edge
        source_state = nsdfg.sdfg.start_state
        nisedge = nsdfg.sdfg.out_edges(source_state)[0]

        # Add state contents (nodes)
        new_state.add_nodes_from(source_state.nodes())

        # Replace data descriptors and symbols on state graph
        for node in source_state.nodes():
            if isinstance(node, nodes.AccessNode) and node.data in mapping:
                node.data = mapping[node.data]
        for edge in source_state.edges():
            edge.data.replace(mapping)
            if edge.data.data in mapping:
                edge.data.data = mapping[edge.data.data]

        # Add state contents (edges)
        for edge in source_state.edges():
            new_state.add_edge(edge.src, edge.src_conn, edge.dst, edge.dst_conn,
                               edge.data)

        # Safe replacement of edge contents
        def replfunc(m):
            for k, v in mapping.items():
                nisedge.data.replace(k, v, replace_keys=False)
        symbolic.safe_replace(mapping, replfunc)

        # Add interstate edge
        for akey, aval in nisedge.data.assignments.items():
            # Map assignment to outer edge
            if akey not in sdfg.symbols and akey not in sdfg.arrays:
                newname = akey
            else:
                newname = nsdfg.label + '_' + akey

            isedge.data.assignments[newname] = aval

            # Add symbol to outer SDFG
            sdfg.add_symbol(newname, nsdfg.sdfg.symbols[akey])

            # Add symbol mapping to nested SDFG
            nsdfg.symbol_mapping[akey] = newname

        isedge.data.condition = nisedge.data.condition

        # Clean nested SDFG
        nsdfg.sdfg.remove_node(source_state)

        # Set new starting state
        nsdfg.sdfg.start_state = nsdfg.sdfg.node_id(nisedge.dst)
コード例 #4
0
    def apply(self, sdfg):
        if isinstance(self.subgraph[StateFusion.first_state], SDFGState):
            first_state: SDFGState = self.subgraph[StateFusion.first_state]
            second_state: SDFGState = self.subgraph[StateFusion.second_state]
        else:
            first_state: SDFGState = sdfg.node(
                self.subgraph[StateFusion.first_state])
            second_state: SDFGState = sdfg.node(
                self.subgraph[StateFusion.second_state])

        # Remove interstate edge(s)
        edges = sdfg.edges_between(first_state, second_state)
        for edge in edges:
            if edge.data.assignments:
                for src, dst, other_data in sdfg.in_edges(first_state):
                    other_data.assignments.update(edge.data.assignments)
            sdfg.remove_edge(edge)

        # Special case 1: first state is empty
        if first_state.is_empty():
            sdutil.change_edge_dest(sdfg, first_state, second_state)
            sdfg.remove_node(first_state)
            if sdfg.start_state == first_state:
                sdfg.start_state = sdfg.node_id(second_state)
            return

        # Special case 2: second state is empty
        if second_state.is_empty():
            sdutil.change_edge_src(sdfg, second_state, first_state)
            sdutil.change_edge_dest(sdfg, second_state, first_state)
            sdfg.remove_node(second_state)
            if sdfg.start_state == second_state:
                sdfg.start_state = sdfg.node_id(first_state)
            return

        # Normal case: both states are not empty

        # Find source/sink (data) nodes
        first_input = [
            node for node in sdutil.find_source_nodes(first_state)
            if isinstance(node, nodes.AccessNode)
        ]
        first_output = [
            node for node in sdutil.find_sink_nodes(first_state)
            if isinstance(node, nodes.AccessNode)
        ]
        second_input = [
            node for node in sdutil.find_source_nodes(second_state)
            if isinstance(node, nodes.AccessNode)
        ]

        top2 = top_level_nodes(second_state)

        # first input = first input - first output
        first_input = [
            node for node in first_input
            if next((x for x in first_output
                     if x.data == node.data), None) is None
        ]

        # Merge second state to first state
        # First keep a backup of the topological sorted order of the nodes
        sdict = first_state.scope_dict()
        order = [
            x for x in reversed(list(nx.topological_sort(first_state._nx)))
            if isinstance(x, nodes.AccessNode) and sdict[x] is None
        ]
        for node in second_state.nodes():
            if isinstance(node, nodes.NestedSDFG):
                # update parent information
                node.sdfg.parent = first_state
            first_state.add_node(node)
        for src, src_conn, dst, dst_conn, data in second_state.edges():
            first_state.add_edge(src, src_conn, dst, dst_conn, data)

        top = top_level_nodes(first_state)

        # Merge common (data) nodes
        for node in second_input:

            # merge only top level nodes, skip everything else
            if node not in top2:
                continue

            if first_state.in_degree(node) == 0:
                candidates = [
                    x for x in order if x.data == node.data and x in top
                ]
                if len(candidates) == 0:
                    continue
                elif len(candidates) == 1:
                    n = candidates[0]
                else:
                    # Choose first candidate that intersects memlets
                    for cand in candidates:
                        if StateFusion.memlets_intersect(
                                first_state, [cand], False, second_state,
                            [node], True):
                            n = cand
                            break
                    else:
                        # No node intersects, use topologically-last node
                        n = candidates[0]

                sdutil.change_edge_src(first_state, node, n)
                first_state.remove_node(node)
                n.access = dtypes.AccessType.ReadWrite

        # Redirect edges and remove second state
        sdutil.change_edge_src(sdfg, second_state, first_state)
        sdfg.remove_node(second_state)
        if sdfg.start_state == second_state:
            sdfg.start_state = sdfg.node_id(first_state)