def apply(self, sdfg): graph = sdfg.nodes()[self.state_id] tile_strides = self.tile_sizes if self.strides is not None and len(self.strides) == len(tile_strides): tile_strides = self.strides # Retrieve map entry and exit nodes. map_entry = graph.nodes()[self.subgraph[MapTiling._map_entry]] from dace.transformation.dataflow.map_collapse import MapCollapse from dace.transformation.dataflow.strip_mining import StripMining stripmine_subgraph = { StripMining._map_entry: self.subgraph[MapTiling._map_entry] } sdfg_id = sdfg.sdfg_list.index(sdfg) last_map_entry = None for dim_idx in range(len(map_entry.map.params)): if dim_idx >= len(self.tile_sizes): tile_size = self.tile_sizes[-1] tile_stride = tile_strides[-1] else: tile_size = self.tile_sizes[dim_idx] tile_stride = tile_strides[dim_idx] stripmine = StripMining(sdfg_id, self.state_id, stripmine_subgraph, self.expr_index) stripmine.dim_idx = dim_idx stripmine.new_dim_prefix = self.prefix stripmine.tile_size = str(tile_size) stripmine.tile_stride = str(tile_stride) stripmine.divides_evenly = self.divides_evenly stripmine.apply(sdfg) if last_map_entry: new_map_entry = graph.in_edges(map_entry)[0].src mapcollapse_subgraph = { MapCollapse._outer_map_entry: graph.node_id(last_map_entry), MapCollapse._inner_map_entry: graph.node_id(new_map_entry) } mapcollapse = MapCollapse(sdfg_id, self.state_id, mapcollapse_subgraph, 0) mapcollapse.apply(sdfg) last_map_entry = graph.in_edges(map_entry)[0].src
def apply(self, sdfg): graph = sdfg.nodes()[self.state_id] tile_strides = self.tile_sizes if self.strides is not None and len(self.strides) == len(tile_strides): tile_strides = self.strides # Retrieve map entry and exit nodes. map_entry = graph.nodes()[self.subgraph[MapTiling._map_entry]] from dace.transformation.dataflow.map_collapse import MapCollapse from dace.transformation.dataflow.strip_mining import StripMining stripmine_subgraph = { StripMining._map_entry: self.subgraph[MapTiling._map_entry] } sdfg_id = sdfg.sdfg_list.index(sdfg) last_map_entry = None removed_maps = 0 original_schedule = map_entry.schedule for dim_idx in range(len(map_entry.map.params)): if dim_idx >= len(self.tile_sizes): tile_size = symbolic.pystr_to_symbolic(self.tile_sizes[-1]) tile_stride = symbolic.pystr_to_symbolic(tile_strides[-1]) else: tile_size = symbolic.pystr_to_symbolic( self.tile_sizes[dim_idx]) tile_stride = symbolic.pystr_to_symbolic(tile_strides[dim_idx]) dim_idx -= removed_maps # If tile size is trivial, skip strip-mining map dimension if tile_size == map_entry.map.range.size()[dim_idx]: continue stripmine = StripMining(sdfg_id, self.state_id, stripmine_subgraph, self.expr_index) # Special case: Tile size of 1 should be omitted from inner map if tile_size == 1 and tile_stride == 1: stripmine.dim_idx = dim_idx stripmine.new_dim_prefix = '' stripmine.tile_size = str(tile_size) stripmine.tile_stride = str(tile_stride) stripmine.divides_evenly = True stripmine.apply(sdfg) removed_maps += 1 else: stripmine.dim_idx = dim_idx stripmine.new_dim_prefix = self.prefix stripmine.tile_size = str(tile_size) stripmine.tile_stride = str(tile_stride) stripmine.divides_evenly = self.divides_evenly stripmine.apply(sdfg) # apply to the new map the schedule of the original one map_entry.schedule = original_schedule if last_map_entry: new_map_entry = graph.in_edges(map_entry)[0].src mapcollapse_subgraph = { MapCollapse._outer_map_entry: graph.node_id(last_map_entry), MapCollapse._inner_map_entry: graph.node_id(new_map_entry) } mapcollapse = MapCollapse(sdfg_id, self.state_id, mapcollapse_subgraph, 0) mapcollapse.apply(sdfg) last_map_entry = graph.in_edges(map_entry)[0].src
def apply(self, sdfg): graph = sdfg.nodes()[self.state_id] subgraph = self.subgraph_view(sdfg) map_entries = helpers.get_outermost_scope_maps(sdfg, graph, subgraph) result = StencilTiling.topology(sdfg, graph, map_entries) (children_dict, parent_dict, sink_maps) = result # next up, calculate inferred ranges for each map # for each map entry, this contains a tuple of dicts: # each of those maps from data_name of the array to # inferred outer ranges. An inferred outer range is created # by taking the union of ranges of inner subsets corresponding # to that data and substituting this subset by the min / max of the # parametrized map boundaries # finally, from these outer ranges we can easily calculate # strides and tile sizes required for every map inferred_ranges = defaultdict(dict) # create array of reverse topologically sorted map entries # to iterate over topo_reversed = [] queue = set(sink_maps.copy()) while len(queue) > 0: element = next(e for e in queue if not children_dict[e] - set(topo_reversed)) topo_reversed.append(element) queue.remove(element) for parent in parent_dict[element]: queue.add(parent) # main loop # first get coverage dicts for each map entry # for each map, contains a tuple of two dicts # each of those two maps from data name to outer range coverage = {} for map_entry in map_entries: coverage[map_entry] = StencilTiling.coverage_dicts( sdfg, graph, map_entry, outer_range=True) # we have a mapping from data name to outer range # however we want a mapping from map parameters to outer ranges # for this we need to find out how all array dimensions map to # outer ranges variable_mapping = defaultdict(list) for map_entry in topo_reversed: map = map_entry.map # first find out variable mapping for e in itertools.chain( graph.out_edges(map_entry), graph.in_edges(graph.exit_node(map_entry))): mapping = [] for dim in e.data.subset: syms = set() for d in dim: syms |= symbolic.symlist(d).keys() if len(syms) > 1: raise NotImplementedError( "One incoming or outgoing stencil subset is indexed " "by multiple map parameters. " "This is not supported yet.") try: mapping.append(syms.pop()) except KeyError: # just append None if there is no map symbol in it. # we don't care for now. mapping.append(None) if e.data in variable_mapping: # assert that this is the same everywhere. # else we might run into problems assert variable_mapping[e.data.data] == mapping else: variable_mapping[e.data.data] = mapping # now do mapping data name -> outer range # and from that infer mapping variable -> outer range local_ranges = {dn: None for dn in coverage[map_entry][1].keys()} for data_name, cov in coverage[map_entry][1].items(): local_ranges[data_name] = subsets.union( local_ranges[data_name], cov) # now look at proceeding maps # and union those subsets -> could be larger with stencil indent for child_map in children_dict[map_entry]: if data_name in coverage[child_map][0]: local_ranges[data_name] = subsets.union( local_ranges[data_name], coverage[child_map][0][data_name]) # final assignent: combine local_ranges and variable_mapping # together into inferred_ranges inferred_ranges[map_entry] = {p: None for p in map.params} for data_name, ranges in local_ranges.items(): for param, r in zip(variable_mapping[data_name], ranges): # create new range from this subset and assign rng = subsets.Range((r, )) if param: inferred_ranges[map_entry][param] = subsets.union( inferred_ranges[map_entry][param], rng) # get parameters -- should all be the same params = next(iter(map_entries)).map.params.copy() # define reference range as inferred range of one of the sink maps self.reference_range = inferred_ranges[next(iter(sink_maps))] if self.debug: print("StencilTiling::Reference Range", self.reference_range) # next up, search for the ranges that don't change invariant_dims = [] for idx, p in enumerate(params): different = False if self.reference_range[p] is None: invariant_dims.append(idx) warnings.warn( f"StencilTiling::No Stencil pattern detected for parameter {p}" ) continue for m in map_entries: if inferred_ranges[m][p] != self.reference_range[p]: different = True break if not different: invariant_dims.append(idx) warnings.warn( f"StencilTiling::No Stencil pattern detected for parameter {p}" ) # during stripmining, we will create new outer map entries # for easy access self._outer_entries = set() # with inferred_ranges constructed, we can begin to strip mine for map_entry in map_entries: # Retrieve map entry and exit nodes. map = map_entry.map stripmine_subgraph = { StripMining._map_entry: graph.nodes().index(map_entry) } sdfg_id = sdfg.sdfg_id last_map_entry = None original_schedule = map_entry.schedule self.tile_sizes = [] self.tile_offset_lower = [] self.tile_offset_upper = [] # strip mining each dimension where necessary removed_maps = 0 for dim_idx, param in enumerate(map_entry.map.params): # get current_node tile size if dim_idx >= len(self.strides): tile_stride = symbolic.pystr_to_symbolic(self.strides[-1]) else: tile_stride = symbolic.pystr_to_symbolic( self.strides[dim_idx]) trivial = False if dim_idx in invariant_dims: self.tile_sizes.append(tile_stride) self.tile_offset_lower.append(0) self.tile_offset_upper.append(0) else: target_range_current = inferred_ranges[map_entry][param] reference_range_current = self.reference_range[param] min_diff = symbolic.SymExpr(reference_range_current.min_element()[0] \ - target_range_current.min_element()[0]) max_diff = symbolic.SymExpr(target_range_current.max_element()[0] \ - reference_range_current.max_element()[0]) try: min_diff = symbolic.evaluate(min_diff, {}) max_diff = symbolic.evaluate(max_diff, {}) except TypeError: raise RuntimeError("Symbolic evaluation of map " "ranges failed. Please check " "your parameters and match.") self.tile_sizes.append(tile_stride + max_diff + min_diff) self.tile_offset_lower.append( symbolic.pystr_to_symbolic(str(min_diff))) self.tile_offset_upper.append( symbolic.pystr_to_symbolic(str(max_diff))) # get calculated parameters tile_size = self.tile_sizes[-1] dim_idx -= removed_maps # If map or tile sizes are trivial, skip strip-mining map dimension # special cases: # if tile size is trivial AND we have an invariant dimension, skip if tile_size == map.range.size()[dim_idx] and ( dim_idx + removed_maps) in invariant_dims: continue # trivial map: we just continue if map.range.size()[dim_idx] in [0, 1]: continue if tile_size == 1 and tile_stride == 1 and ( dim_idx + removed_maps) in invariant_dims: trivial = True removed_maps += 1 # indent all map ranges accordingly and then perform # strip mining on these. Offset inner maps accordingly afterwards range_tuple = (map.range[dim_idx][0] + self.tile_offset_lower[-1], map.range[dim_idx][1] - self.tile_offset_upper[-1], map.range[dim_idx][2]) map.range[dim_idx] = range_tuple stripmine = StripMining(sdfg_id, self.state_id, stripmine_subgraph, 0) stripmine.tiling_type = 'ceilrange' stripmine.dim_idx = dim_idx stripmine.new_dim_prefix = self.prefix if not trivial else '' # use tile_stride for both -- we will extend # the inner tiles later stripmine.tile_size = str(tile_stride) stripmine.tile_stride = str(tile_stride) outer_map = stripmine.apply(sdfg) outer_map.schedule = original_schedule # apply to the new map the schedule of the original one map_entry.schedule = self.schedule # if tile stride is 1, we can make a nice simplification by just # taking the overapproximated inner range as inner range # this eliminates the min/max in the range which # enables loop unrolling if tile_stride == 1: map_entry.range[dim_idx] = tuple( symbolic.SymExpr(el._approx_expr) if isinstance( el, symbolic.SymExpr) else el for el in map_entry.range[dim_idx]) # in map_entry: enlarge tiles by upper and lower offset # doing it this way and not via stripmine strides ensures # that the max gets changed as well old_range = map_entry.range[dim_idx] map_entry.range[dim_idx] = ((old_range[0] - self.tile_offset_lower[-1]), (old_range[1] + self.tile_offset_upper[-1]), old_range[2]) # We have to propagate here for correct outer volume and subset sizes _propagate_node(graph, map_entry) _propagate_node(graph, graph.exit_node(map_entry)) # usual tiling pipeline if last_map_entry: new_map_entry = graph.in_edges(map_entry)[0].src mapcollapse_subgraph = { MapCollapse._outer_map_entry: graph.node_id(last_map_entry), MapCollapse._inner_map_entry: graph.node_id(new_map_entry) } mapcollapse = MapCollapse(sdfg_id, self.state_id, mapcollapse_subgraph, 0) mapcollapse.apply(sdfg) last_map_entry = graph.in_edges(map_entry)[0].src # add last instance of map entries to _outer_entries if last_map_entry: self._outer_entries.add(last_map_entry) # Map Unroll Feature: only unroll if conditions are met: # Only unroll if at least one of the inner map ranges is strictly larger than 1 # Only unroll if strides all are one if self.unroll_loops and all(s == 1 for s in self.strides) and any( s not in [0, 1] for s in map_entry.range.size()): l = len(map_entry.params) if l > 1: subgraph = { MapExpansion.map_entry: graph.nodes().index(map_entry) } trafo_expansion = MapExpansion(sdfg.sdfg_id, sdfg.nodes().index(graph), subgraph, 0) trafo_expansion.apply(sdfg) maps = [map_entry] for _ in range(l - 1): map_entry = graph.out_edges(map_entry)[0].dst maps.append(map_entry) for map in reversed(maps): # MapToForLoop subgraph = { MapToForLoop._map_entry: graph.nodes().index(map) } trafo_for_loop = MapToForLoop(sdfg.sdfg_id, sdfg.nodes().index(graph), subgraph, 0) trafo_for_loop.apply(sdfg) nsdfg = trafo_for_loop.nsdfg # LoopUnroll guard = trafo_for_loop.guard end = trafo_for_loop.after_state begin = next(e.dst for e in nsdfg.out_edges(guard) if e.dst != end) subgraph = { DetectLoop._loop_guard: nsdfg.nodes().index(guard), DetectLoop._loop_begin: nsdfg.nodes().index(begin), DetectLoop._exit_state: nsdfg.nodes().index(end) } transformation = LoopUnroll(0, 0, subgraph, 0) transformation.apply(nsdfg) elif self.unroll_loops: warnings.warn( "Did not unroll loops. Either all ranges are equal to " "one or range difference is symbolic.") self._outer_entries = list(self._outer_entries)
def apply(self, sdfg): graph = sdfg.nodes()[self.state_id] map_entry = graph.nodes()[self.subgraph[MPITransformMap._map_entry]] # Avoiding import loops from dace.transformation.dataflow.strip_mining import StripMining from dace.transformation.dataflow.local_storage import LocalStorage rangeexpr = str(map_entry.map.range.num_elements()) stripmine_subgraph = { StripMining._map_entry: self.subgraph[MPITransformMap._map_entry] } sdfg_id = sdfg.sdfg_id stripmine = StripMining(sdfg_id, self.state_id, stripmine_subgraph, self.expr_index) stripmine.dim_idx = -1 stripmine.new_dim_prefix = "mpi" stripmine.tile_size = "(" + rangeexpr + "/__dace_comm_size)" stripmine.divides_evenly = True stripmine.apply(sdfg) # Find all in-edges that lead to candidate[MPITransformMap._map_entry] outer_map = None edges = [ e for e in graph.in_edges(map_entry) if isinstance(e.src, nodes.EntryNode) ] outer_map = edges[0].src # Add MPI schedule attribute to outer map outer_map.map._schedule = dtypes.ScheduleType.MPI # Now create a transient for each array for e in edges: in_local_storage_subgraph = { LocalStorage.node_a: graph.node_id(outer_map), LocalStorage.node_b: self.subgraph[MPITransformMap._map_entry] } sdfg_id = sdfg.sdfg_id in_local_storage = LocalStorage(sdfg_id, self.state_id, in_local_storage_subgraph, self.expr_index) in_local_storage.array = e.data.data in_local_storage.apply(sdfg) # Transform OutLocalStorage for each output of the MPI map in_map_exit = graph.exit_node(map_entry) out_map_exit = graph.exit_node(outer_map) for e in graph.out_edges(out_map_exit): name = e.data.data outlocalstorage_subgraph = { LocalStorage.node_a: graph.node_id(in_map_exit), LocalStorage.node_b: graph.node_id(out_map_exit) } sdfg_id = sdfg.sdfg_id outlocalstorage = LocalStorage(sdfg_id, self.state_id, outlocalstorage_subgraph, self.expr_index) outlocalstorage.array = name outlocalstorage.apply(sdfg)