コード例 #1
0
ファイル: test_full_rnn.py プロジェクト: dribnet/dagbldr
def test_tanh_rnn():
    # random state so script is deterministic
    random_state = np.random.RandomState(1999)
    # home of the computational graph
    graph = OrderedDict()

    # number of hidden features
    n_hid = 10
    # number of output_features = input_features
    n_out = X.shape[-1]

    # input (where first dimension is time)
    datasets_list = [X, X_mask, y, y_mask]
    names_list = ["X", "X_mask", "y", "y_mask"]
    test_values_list = [X, X_mask, y, y_mask]
    X_sym, X_mask_sym, y_sym, y_mask_sym = add_datasets_to_graph(
        datasets_list, names_list, graph, list_of_test_values=test_values_list)

    # Setup weights
    l1 = linear_layer([X_sym], graph, 'l1_proj', n_hid, random_state)

    h = tanh_recurrent_layer([l1], X_mask_sym, n_hid, graph, 'l1_rec',
                             random_state)

    # linear output activation
    y_hat = linear_layer([h], graph, 'l2_proj', n_out, random_state)

    # error between output and target
    cost = squared_error(y_hat, y_sym)
    cost = masked_cost(cost, y_mask_sym).mean()
    # Parameters of the model
    params, grads = get_params_and_grads(graph, cost)

    # Use stochastic gradient descent to optimize
    opt = sgd(params)
    learning_rate = 0.001
    updates = opt.updates(params, grads, learning_rate)

    fit_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym],
                                   [cost],
                                   updates=updates,
                                   mode="FAST_COMPILE")

    cost_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym],
                                    [cost],
                                    mode="FAST_COMPILE")
    checkpoint_dict = {}
    train_indices = np.arange(X.shape[1])
    valid_indices = np.arange(X.shape[1])
    early_stopping_trainer(fit_function,
                           cost_function,
                           checkpoint_dict, [X, y],
                           minibatch_size,
                           train_indices,
                           valid_indices,
                           fit_function_output_names=["cost"],
                           cost_function_output_name="valid_cost",
                           n_epochs=1)
コード例 #2
0
ファイル: test_full_rnn.py プロジェクト: samim23/dagbldr
def test_tanh_rnn():
    # random state so script is deterministic
    random_state = np.random.RandomState(1999)
    # home of the computational graph
    graph = OrderedDict()

    # number of hidden features
    n_hid = 10
    # number of output_features = input_features
    n_out = X.shape[-1]

    # input (where first dimension is time)
    datasets_list = [X, X_mask, y, y_mask]
    names_list = ["X", "X_mask", "y", "y_mask"]
    test_values_list = [X, X_mask, y, y_mask]
    X_sym, X_mask_sym, y_sym, y_mask_sym = add_datasets_to_graph(
        datasets_list, names_list, graph, list_of_test_values=test_values_list)

    # Setup weights
    l1 = linear_layer([X_sym], graph, 'l1_proj', proj_dim=n_hid,
                      random_state=random_state)

    h = tanh_recurrent_layer([l1], X_mask_sym, n_hid, graph, 'l1_rec',
                             random_state)

    # linear output activation
    y_hat = linear_layer([h], graph, 'l2_proj', proj_dim=n_out,
                         random_state=random_state)

    # error between output and target
    cost = squared_error(y_hat, y_sym)
    cost = masked_cost(cost, y_mask_sym).mean()
    # Parameters of the model
    params, grads = get_params_and_grads(graph, cost)

    # Use stochastic gradient descent to optimize
    learning_rate = 0.001
    opt = sgd(params, learning_rate)
    updates = opt.updates(params, grads)

    fit_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym],
                                   [cost], updates=updates, mode="FAST_COMPILE")

    cost_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym],
                                    [cost], mode="FAST_COMPILE")
    checkpoint_dict = {}
    train_indices = np.arange(X.shape[1])
    valid_indices = np.arange(X.shape[1])
    early_stopping_trainer(fit_function, cost_function,
                           train_indices, valid_indices,
                           checkpoint_dict,
                           [X, y], minibatch_size,
                           list_of_train_output_names=["cost"],
                           valid_output_name="valid_cost",
                           n_epochs=1)
コード例 #3
0
l1_enc = softplus_layer([X_sym], graph, 'l1_enc', n_enc_layer[0], random_state)
l2_enc = softplus_layer([l1_enc], graph, 'l2_enc',  n_enc_layer[1],
                        random_state)
code_mu = linear_layer([l2_enc], graph, 'code_mu', n_code, random_state)
code_log_sigma = linear_layer([l2_enc], graph, 'code_log_sigma', n_code,
                              random_state)
kl = gaussian_log_kl([code_mu], [code_log_sigma], graph, 'kl').mean()
samp = gaussian_log_sample_layer([code_mu], [code_log_sigma], graph, 'samp',
                                 random_state)

# decode path aka p
l1_dec = softplus_layer([samp], graph, 'l1_dec',  n_dec_layer[0], random_state)
l2_dec = softplus_layer([l1_dec], graph, 'l2_dec', n_dec_layer[1], random_state)
out = linear_layer([l2_dec], graph, 'out', n_input, random_state)

nll = squared_error(out, X_sym).mean()
# log p(x) = -nll so swap sign
# want to minimize cost in optimization so multiply by -1
cost = -1 * (-nll - kl)
params, grads = get_params_and_grads(graph, cost)

learning_rate = 0.0003
opt = adam(params)
updates = opt.updates(params, grads, learning_rate)

# Checkpointing
try:
    checkpoint_dict = load_last_checkpoint()
    fit_function = checkpoint_dict["fit_function"]
    cost_function = checkpoint_dict["cost_function"]
    encode_function = checkpoint_dict["encode_function"]
コード例 #4
0
ファイル: test_penalties.py プロジェクト: dribnet/dagbldr
def test_squared_error():
    graph = OrderedDict()
    X_sym = add_datasets_to_graph([X], ["X"], graph)
    cost = squared_error(.5 * X_sym, X_sym)
    theano.function([X_sym], cost, mode="FAST_COMPILE")
コード例 #5
0
ファイル: test_penalties.py プロジェクト: kastnerkyle/dagbldr
def test_squared_error():
    cost = squared_error(.5 * X_sym, X_sym)
    theano.function([X_sym], cost, mode="FAST_COMPILE")
コード例 #6
0
ファイル: test_penalties.py プロジェクト: hdubey/dagbldr
def test_squared_error():
    cost = squared_error(.5 * X_sym, X_sym)
    theano.function([X_sym], cost, mode="FAST_COMPILE")