コード例 #1
0
def benchmark_bert_mdl():
    bert = load_bert_ner_model()

    start = time.time()

    predictions = []
    for i, sentence in enumerate(sentences_tokens):
        _, pred_ents = bert.predict(sentence)
        predictions.append(pred_ents)
    print('BERT:')
    print_speed_performance(start, num_sentences, num_tokens)

    assert len(predictions) == num_sentences

    print(f1_report(sentences_entities, remove_miscs(predictions), bio=True))
コード例 #2
0
def benchmark_bert_mdl():
    bert = load_bert_ner_model()

    start = time.time()

    predictions = []
    for i, sentence in enumerate(sentences_tokens):
        _, pred_ents = bert.predict(sentence)
        predictions.append(pred_ents)
    print('bert:')
    print("Made predictions on {} sentences and {} tokens in {}s".format(
        num_sentences, num_tokens,
        time.time() - start))

    assert len(predictions) == num_sentences

    print(
        classification_report(sentences_entities,
                              remove_miscs(predictions),
                              digits=4))
コード例 #3
0
 def setup(self):
     self.model = dm.load_bert_ner_model()
コード例 #4
0
ファイル: time_complexity.py プロジェクト: jorgeta/ner
# general
import numpy as np
import time
import torch

# models
from danlp.models import load_bert_ner_model  #, load_flair_ner_model

# dataset
from danlp.datasets import DDT

# utils
#from flair.data import Sentence, Token

# load models
bert = load_bert_ner_model()
'''flair = load_flair_ner_model()'''

# CUDA for PyTorch
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
torch.backends.cudnn.benchmark = True

# get data (splitted into a training set, a validation set, and a test set)
ddt = DDT()
train, valid, test = ddt.load_as_simple_ner(True)

# divide the observations and the targets of the testset into new variables
sentences, categories = test

batch_size = 64