def CPUStreamingRNN(cache_dir=None): """ DanSpeech model with lookahead, which works as a real-time streaming model. This model runs on most modern CPUs. 2 conv layers 5 RNN layers (not bidirectional) with 800 units each Lookahead context is 20 :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/models/`` folder. :return: Pretrained DeepSpeech (Streaming for CPU) model :rtype: ``danspeech.deepspeech.model.DeepSpeech`` """ model_path = get_model(model_name="CPUStreamingRNN.pth", origin=MODEL_PACKAGE, file_hash="ba514ec96b511c0797dc643190a80269", cache_dir=cache_dir) model = DeepSpeech.load_model(model_path) return model
def DSLWiki3gram(cache_dir=None): """ DSL and wikipedia corpus trained 3-gram model. :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/lms/`` folder. :return: path to .klm language model :rtype: str """ return get_model(model_name="dsl_wiki_3gram.klm", origin=LANGUAGE_MODEL_ORIGIN, file_hash="f38f55a1e14ad888cee3ea1e643593dc", cache_dir=cache_dir, file_type="language_model")
def DSL5gram(cache_dir=None): """ DSL 5-gram language model. This is the best performing for out test cases along with DSL 3-gram. :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/lms/`` folder. :return: path to .klm language model :rtype: str """ return get_model(model_name="dsl_5gram.klm", origin=LANGUAGE_MODEL_ORIGIN, file_hash="f2929d6d154b57b8be0c05347036c7e6", cache_dir=cache_dir, file_type="language_model")
def DSLWiki5gram(cache_dir=None): """ DSL and wikipedia corpus trained 5-gram model. :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/lms/`` folder. :return: path to .klm language model :rtype: str """ return get_model(model_name="dsl_wiki_5gram.klm", origin=LANGUAGE_MODEL_ORIGIN, file_hash="070287617eacbbde79df2be34ac9615f", cache_dir=cache_dir, file_type="language_model")
def Wiki5gram(cache_dir=None): """ wikipedia corpus trained 5-gram model. :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/lms/`` folder. :return: path to .klm language model :rtype: str """ return get_model(model_name="wiki_5gram.klm", origin=LANGUAGE_MODEL_ORIGIN, file_hash="b329e215b2fde5ffe3e2c94204f6c189", cache_dir=cache_dir, file_type="language_model")
def Folketinget3gram(cache_dir=None): """ 3-gram language model trained on all meeting summaries from the Danish Parliament (Folketinget) :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/lms/`` folder. :return: path to .klm language model :rtype: str """ return get_model(model_name="da_lm_3gram_folketinget.klm", origin=LANGUAGE_MODEL_ORIGIN, file_hash="011771d8bef6ff531812a768f631b4a2", cache_dir=cache_dir, file_type="language_model")
def DSLWikiLeipzig3gram(cache_dir=None): """ DSL, wikipedia and Leipzig corpus trained 3-gram model. :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/lms/`` folder. :return: path to .klm language model :rtype: str """ return get_model(model_name="dsl_wiki_leipzig_3gram.klm", origin=LANGUAGE_MODEL_ORIGIN, file_hash="8409a469be718209afdd18692a2d5609", cache_dir=cache_dir, file_type="language_model")
def Wiki3gram(cache_dir=None): """ wikipedia corpus trained 3-gram model. :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/lms/`` folder. :return: path to .klm language model :rtype: str """ return get_model(model_name="wiki_3gram.klm", origin=LANGUAGE_MODEL_ORIGIN, file_hash="12877123bbbbaa72826746cad0af6f7d", cache_dir=cache_dir, file_type="language_model")
def DSL3gramWithNames(cache_dir=None): """ Includes DSL + a bias towards the most common names in Denmark. DSL 3-gram language model. This is the best performing for out test cases along with DSL 5-gram. :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/lms/`` folder. :return: path to .klm language model :rtype: str """ return get_model(model_name="dsl_names.klm", origin=LANGUAGE_MODEL_ORIGIN, file_hash="1b47e2db841c6be5c62004ef51a40c68", cache_dir=cache_dir, file_type="language_model")
def Folketinget(cache_dir=None): """ The deepest and best performing DanSpeech model finetuned to data from Folketinget. 3 Conv layers 9 RNN Layers with 1200 hidden units :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/models/`` folder. :return: Pretrained DeepSpeech (Folketinget tuned) model. :rtype: ``danspeech.deepspeech.model.DeepSpeech`` """ model_path = get_model(model_name="Folketinget.pth", origin=MODEL_PACKAGE, file_hash="9523d5744ad4ff5ffc8519393350cc91", cache_dir=cache_dir) model = DeepSpeech.load_model(model_path) return model
def Baseline(cache_dir=None): """ Baseline DanSpeech model. 2 Conv layers 5 RNN Layers with 800 hidden units :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/models/`` folder. :return: Pretrained DeepSpeech (Baseline) model. :rtype: ``danspeech.deepspeech.model.DeepSpeech`` """ model_path = get_model(model_name="Baseline.pth", origin=MODEL_PACKAGE, file_hash="e2c0c16d518fc57cd61c86cbb0170660", cache_dir=cache_dir) model = DeepSpeech.load_model(model_path) return model
def DanSpeechPrimary(cache_dir=None): """ Deepest and best performing DanSpeech model. 3 Conv layers 9 RNN Layers with 1200 hidden units :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/models/`` folder. :return: Pretrained DeepSpeech (Best Performing) model. :rtype: ``danspeech.deepspeech.model.DeepSpeech`` """ model_path = get_model(model_name="DanSpeechPrimary.pth", origin=MODEL_PACKAGE, file_hash="5bd08282d442e990c37481d5c61cf93c", cache_dir=cache_dir) model = DeepSpeech.load_model(model_path) return model
def EnglishLibrispeech(cache_dir=None): """ English trained model on the Librispeech corpus. 2 Conv layers 5 RNN Layers with 800 hidden units :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/models/`` folder. :return: Pretrained DeepSpeech (English speech recognition) model. :rtype: ``danspeech.deepspeech.model.DeepSpeech`` """ model_path = get_model(model_name="Librispeech.pth", origin=MODEL_PACKAGE, file_hash="56630094905e7308f42ae0f82421440b", cache_dir=cache_dir) model = DeepSpeech.load_model(model_path) return model
def GPUStreamingRNN(cache_dir=None): """ DanSpeech model with lookahead, which works as a real-time streaming model. This model will not be able to follow a stream of data on regular CPUS. Hence, use a GPU. 2 conv layers 5 RNN layers (not bidirectional) with 2000 units each Lookahead context is 20 :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/models/`` folder. :return: Pretrained DeepSpeech (Streaming for GPU) model :rtype: ``danspeech.deepspeech.model.DeepSpeech`` """ model_path = get_model(model_name="GPUStreamingRNN.pth", origin=MODEL_PACKAGE, file_hash="8194f47f5c63c14c3587d42aa37d622d", cache_dir=cache_dir) model = DeepSpeech.load_model(model_path) return model
def TransferLearned(cache_dir=None): """ The Librispeech English model adapted to Danish while keeping the conv layers and the lowest/first RNN layer frozen This model performs better than the DanSpeechPrimary model on noisy data. 2 Conv layers 5 RNN Layers with 800 hidden units param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/models/`` folder. :return: Pretrained DeepSpeech (Transfer learned from English) model :rtype: ``danspeech.deepspeech.model.DeepSpeech`` """ model_path = get_model(model_name="TransferLearned.pth", origin=MODEL_PACKAGE, file_hash="d19b9d7dc976bffbc9225e0f80ecacbf", cache_dir=cache_dir) model = DeepSpeech.load_model(model_path) return model
def TestModel(cache_dir=None): """ Test model that runs very fast even on CPUs Performance is very bad! 2 Conv layers 5 RNN Layers with 400 hidden units :param str cache_dir: If you wish to use custom directory to stash/cache your models. This is generally not recommended, and if left out, the DanSpeech models will be stored in the ``~/.danspeech/models/`` folder. :return: Pretrained DeepSpeech (Testing purposes) model :rtype: ``danspeech.deepspeech.model.DeepSpeech`` """ model_path = get_model(model_name="TestModel.pth", origin=MODEL_PACKAGE, file_hash="c21438a33f847a9c8d4e08779e98bf31", cache_dir=cache_dir) model = DeepSpeech.load_model(model_path) return model