コード例 #1
0
    def shift_eng(self, new_eng):
        """ Shifts the abscissa while conserving number.

        This function can be used to subtract or add some amount of energy from each bin in the spectrum. The dN/dE is adjusted to conserve number in each bin.

        Parameters
        ----------
        new_eng : ndarray
            The new energy abscissa.

        Returns
        -------
        None
        """
        if new_eng.size != self.eng.size:
            raise TypeError(
                "The new abscissa must have the same length as the old one.")
        if not all(np.diff(new_eng) > 0):
            raise TypeError("abscissa must be ordered in increasing energy.")

        new_log_bin_width = get_log_bin_width(new_eng)

        if self._spec_type == 'dNdE':
            new_dNdE = self.totN('bin') / (new_eng * new_log_bin_width)
            self.eng = new_eng
            self._data = new_dNdE
        elif self._spec_type == 'N':
            self.eng = new_eng
コード例 #2
0
    def switch_spec_type(self, target=None):
        """Switches between data being stored as N or dN/dE.

        Parameters
        ----------
        target : {'N', 'dNdE'}, optional
            The target type to switch to. If not specified, performs a switch regardless. 

        Notes
        ------

        Although both N and dN/dE can be accessed regardless of which values
        are stored, performing a switch before repeated computations can
        speed up the computation.

        """
        if target is not None:
            if target != 'N' and target != 'dNdE':
                raise ValueError('Invalid target specified.')

        log_bin_width = get_log_bin_width(self.eng)
        if self._spec_type == 'N' and not target == 'N':
            self._data = self._data / (self.eng * log_bin_width)
            self._spec_type = 'dNdE'
        elif self._spec_type == 'dNdE' and not target == 'dNdE':
            self._data = self._data * self.eng * log_bin_width
            self._spec_type = 'N'
コード例 #3
0
ファイル: spectra.py プロジェクト: wenzerq/DarkHistory
    def switch_spec_type(self, target=None):
        """Switches between the type of values to be stored.

        Parameters
        ----------
        target : {'N', 'dNdE'}
            The target type to switch to. 
        """
        log_bin_width = get_log_bin_width(self.eng)
        if self.spec_type == 'N' and not target == 'N':
            self._grid_vals = self.grid_vals / (self.eng * log_bin_width)
            self._spec_type = 'dNdE'
        elif self.spec_type == 'dNdE' and not target == 'dNdE':
            self._grid_vals = self.grid_vals * self.eng * log_bin_width
            self._spec_type = 'N'
コード例 #4
0
ファイル: physics.py プロジェクト: JIANSHULI/DarkHistory
def get_optical_depth(rs_vec, xe_vec):
    """Computes the optical depth given an ionization history.

    Parameters
    ----------
    rs_vec : ndarray
        Redshift (1+z).
    xe_vec : ndarray
        Free electron fraction xe = ne/nH.

    Returns
    -------
    float
        The optical depth.
    """
    from darkhistory.spec.spectools import get_log_bin_width

    rs_log_bin_width = get_log_bin_width(rs_vec)
    abs_dtdz_vec = -dtdz(rs_vec)

    return np.dot(xe_vec * nH * thomson_xsec * c * abs_dtdz_vec,
                  rs_vec**4 * rs_log_bin_width)
コード例 #5
0
ファイル: spectra.py プロジェクト: wenzerq/DarkHistory
    def toteng(self, bound_type=None, bound_arr=None):
        """Returns the total energy of particles in part of the spectra.

        The part of the `Spectrum` objects to find the total energy of particles can be specified in two ways, and is specified by `bound_type`. Multiple totals can be obtained through `bound_arr`.

        Parameters
        ----------
        bound_type : {'bin', 'eng', None}
            The type of bounds to use. Bound values do not have to be within the [0:eng.size] for `'bin'` or within the abscissa for `'eng'`. `None` should only be used when computing the total particle number in the spectrum. 

            Specifying ``bound_type=='bin'`` without bound_arr gives the total energy in each bin. 

        bound_arr : ndarray of length N, optional
            An array of boundaries (bin or energy), between which the total number of particles will be computed. If unspecified, the total number of particles in the whole spectrum is computed.

            For 'bin', bounds are specified as the bin *boundary*, with 0 being the left most boundary, 1 the right-hand of the first bin and so on. This is equivalent to integrating over a histogram. For 'eng', bounds are specified by energy values.

            These boundaries need not be integer values for 'bin': specifying np.array([0.5, 1.5]) for example will include half of the first bin and half of the second.

        Returns
        -------
        ndarray of shape (self.rs.size, N-1) or length N-1
            Total number of particles in the spectra or between the specified boundaries.

        Examples
        --------
        >>> from darkhistory.spec.spectrum import Spectrum
        >>> eng = np.array([1, 10, 100, 1000])
        >>> spec_arr = [Spectrum(eng, np.arange(4) + 4*i, rs=100, spec_type='N') for i in np.arange(4)]
        >>> test_spectra = Spectra(spec_arr)
        >>> test_spectra.toteng()
        array([ 3210.,  7654.,  12098.,  16542.])
        >>> test_spectra.toteng('bin', np.array([1, 3]))
        array([[ 210., 650., 1090., 1530.]])
        >>> test_spectra.toteng('eng', np.array([10, 1e4]))
        array([[ 3205., 7625., 12045., 16465.]])

        See Also
        ---------
        :meth:`Spectra.totN`

        """
        log_bin_width = get_log_bin_width(self.eng)

        # Using the broadcasting rules here.
        if self.spec_type == 'dNdE':
            dNdlogE = self.grid_vals * self.eng
        elif self.spec_type == 'N':
            dNdlogE = self.grid_vals / log_bin_width

        if bound_type is not None:

            if bound_arr is None:

                return dNdlogE * self.eng * log_bin_width

            if bound_type == 'bin':

                if not all(np.diff(bound_arr) >= 0):
                    raise TypeError('bound_arr must have increasing entries.')

                # Size is number of totals requested x number of Spectrums.
                eng_in_bin = np.zeros((bound_arr.size - 1, self.in_eng.size))

                if bound_arr[0] > self.eng.size or bound_arr[-1] < 0:
                    return eng_in_bin

                for i, (low,
                        upp) in enumerate(zip(bound_arr[:-1], bound_arr[1:])):

                    # Set the lower and upper bounds, including case where
                    # low and upp are outside of the bins.
                    if low > self.eng.size or upp < 0:
                        continue

                    low_ceil = int(np.ceil(low))
                    low_floor = int(np.floor(low))
                    upp_ceil = int(np.ceil(upp))
                    upp_floor = int(np.floor(upp))

                    # Sum the bins that are completely between the bounds.

                    eng_full_bins = np.dot(
                        dNdlogE[:, low_ceil:upp_floor] *
                        self.eng[low_ceil:upp_floor],
                        log_bin_width[low_ceil:upp_floor])

                    eng_part_bins = np.zeros_like(self.in_eng)

                    if low_floor == upp_floor or low_ceil == upp_ceil:

                        # Bin indices are within the same bin. The second
                        # requirement covers the case where upp_ceil is
                        # eng.size.

                        eng_part_bins += (dNdlogE[:, low_floor] * (upp - low) *
                                          self.eng[low_floor] *
                                          log_bin_width[low_floor])

                    else:
                        # Add up part of the bin for the low partial bin
                        # and the high partial bin.
                        eng_part_bins += (dNdlogE[:, low_floor] *
                                          (low_ceil - low) *
                                          self.eng[low_floor] *
                                          log_bin_width[low_floor])

                        if upp_floor < self.eng.size:
                            # If upp_floor is eng.size, then there is no
                            # partial bin for the upper index.
                            eng_part_bins += (dNdlogE[:, upp_floor] *
                                              (upp - upp_floor) *
                                              self.eng[upp_floor] *
                                              log_bin_width[upp_floor])

                    eng_in_bin[i] = eng_full_bins + eng_part_bins

                return eng_in_bin

            if bound_type == 'eng':
                bin_boundary = get_bin_bound(self.eng)
                eng_bin_ind = np.interp(np.log(bound_arr),
                                        np.log(bin_boundary),
                                        np.arange(bin_boundary.size),
                                        left=0,
                                        right=self.eng.size + 1)

                return self.toteng('bin', eng_bin_ind)

        else:
            return (np.dot(dNdlogE, self.eng * log_bin_width) +
                    self.eng_underflow)
コード例 #6
0
ファイル: spectra.py プロジェクト: wenzerq/DarkHistory
    def rebin(self, out_eng):
        """ Re-bins all `Spectrum` objects according to a new abscissa.

        Rebinning conserves total number and total energy.

        Parameters
        ----------
        out_eng : ndarray
            The new abscissa to bin into. If `self.eng` has values that are smaller than `out_eng[0]`, then the new underflow will be filled. If `self.eng` has values that exceed `out_eng[-1]`, then an error is returned.

        rebin_type : {'1D', '2D'}, optional
            Whether to rebin each `Spectrum` separately (`'1D'`), or the whole `Spectra` object at once (`'2D'`). Default is `'2D'`.

        See Also
        --------
        spec.spectools.rebin_N_2D_arr
        """

        if not np.all(np.diff(out_eng) > 0):
            raise TypeError(
                'new abscissa must be ordered in increasing energy.')

        # Get the bin indices that the current abscissa (self.eng)
        # corresponds to in the new abscissa (new_eng). Bin indices are
        # with respect to bin centers.

        # Add an additional bin at the lower end of out_eng so that
        # underflow can be treated easily.

        first_bin_eng = np.exp(
            np.log(out_eng[0]) - (np.log(out_eng[1]) - np.log(out_eng[0])))
        new_eng = np.insert(out_eng, 0, first_bin_eng)

        # Find the relative bin indices for self.eng. The first bin in
        # new_eng has bin index -1. Underflow has index -2, overflow
        # corresponds to new_eng.size

        bin_ind = np.interp(self.eng,
                            new_eng,
                            np.arange(new_eng.size) - 1,
                            left=-2,
                            right=new_eng.size)

        # Locate where bin_ind is below 0, above self.length-1
        # or in between.

        ind_low = np.where(bin_ind < 0)[0]
        ind_high = np.where(bin_ind == new_eng.size)[0]
        ind_reg = np.where((bin_ind >= 0) & (bin_ind <= new_eng.size - 1))[0]

        if ind_high.size > 0:
            warnings.warn(
                "The new abscissa lies below the old one: only bins that lie within the new abscissa will be rebinned, bins above the abscissa will be discarded.",
                RuntimeWarning)

        # These arrays are of size in_eng x eng.
        N_arr = self.totN('bin')
        toteng_arr = self.toteng('bin')

        N_arr_low = N_arr[:, ind_low]
        N_arr_high = N_arr[:, ind_high]
        N_arr_reg = N_arr[:, ind_reg]

        toteng_arr_low = toteng_arr[:, ind_low]

        # Factor depends on the spec_type.
        if self.spec_type == 'dNdE':
            # E dlog E of the new array.
            fac = new_eng * get_log_bin_width(new_eng)
        elif self.spec_type == 'N':
            fac = np.ones_like(new_eng)

        # Regular bins first.

        # reg_bin_low is the array of the lower bins to be allocated the
        # particles in N_arr_reg, similarly reg_bin_upp. This should also
        # take care of the case where bin_ind is an integer.

        reg_bin_low = np.floor(bin_ind[ind_reg]).astype(int)
        reg_bin_upp = reg_bin_low + 1

        # Takes care of the case where eng[-1] = new_eng[-1], which falls
        # under regular indices. Remember the extra bin on the left.
        reg_bin_low[reg_bin_low == new_eng.size - 2] = new_eng.size - 3
        reg_bin_upp[reg_bin_upp == new_eng.size - 1] = new_eng.size - 2

        # Split the particles up into the lower bin and upper bin.
        # Remember there's an extra bin on the left when indexing into
        # new_E_dlogE.
        reg_data_low = ((reg_bin_upp - bin_ind[ind_reg]) * N_arr_reg /
                        fac[reg_bin_low + 1])
        reg_data_upp = ((bin_ind[ind_reg] - reg_bin_low) * N_arr_reg /
                        fac[reg_bin_upp + 1])

        # Handle low bins.
        low_bin_low = np.floor(bin_ind[ind_low]).astype(int)

        N_above_underflow = np.sum(
            (bin_ind[ind_low] - low_bin_low) * N_arr_low, axis=1)
        eng_above_underflow = N_above_underflow * new_eng[1]

        N_underflow = np.sum(N_arr_low, axis=1) - N_above_underflow
        eng_underflow = (np.sum(toteng_arr_low, axis=1) - eng_above_underflow)
        low_data = N_above_underflow / fac[1]

        # Add up, obtain the new dN/dE.

        new_data = np.zeros((self.in_eng.size, new_eng.size))
        new_data[:, 1] += low_data

        # np.add.at(new_data, (slice(None), reg_bin_low+1), reg_data_low)
        # np.add.at(new_data, (slice(None), reg_bin_upp+1), reg_data_upp)

        # Replace with agg.aggregate
        from darkhistory.numpy_groupies import aggregate as agg

        # low_data = agg.aggregate(
        #     reg_bin_low+1, reg_data_low, func='sum', fill_value=0, axis=1, size=new_eng.size
        # )

        # upp_data = agg.aggregate(
        #     reg_bin_upp+1, reg_data_upp, func='sum', fill_value=0, axis=1, size=new_eng.size
        # )
        # new_data = (low_data + upp_data)

        low_data = agg.aggregate(reg_bin_low + 1,
                                 np.transpose(reg_data_low),
                                 func='sum',
                                 fill_value=0,
                                 axis=0,
                                 size=new_eng.size)

        upp_data = agg.aggregate(reg_bin_upp + 1,
                                 np.transpose(reg_data_upp),
                                 func='sum',
                                 fill_value=0,
                                 axis=0,
                                 size=new_eng.size)

        new_data += np.transpose(low_data + upp_data)

        # new_data[:,reg_bin_low+1] += reg_data_low
        # new_data[:,reg_bin_upp+1] += reg_data_upp

        self._eng = new_eng[1:]
        self._grid_vals = new_data[:, 1:]
        self._N_underflow += N_underflow
        self._eng_underflow += eng_underflow
コード例 #7
0
 def N(self, value):
     if self._spec_type == 'dNdE':
         self._data = value * self.eng * get_log_bin_width(self.eng)
     elif self._spec_type == 'N':
         self._data = value
コード例 #8
0
 def N(self):
     if self._spec_type == 'dNdE':
         return self._data * self.eng * get_log_bin_width(self.eng)
     elif self._spec_type == 'N':
         return self._data
コード例 #9
0
    def rebin(self, out_eng):
        """ Rebins according to a new abscissa.

        The total number and total energy is conserved.

        If a bin in the old abscissa self.eng is below the lowest bin of the new abscissa out_eng, then the total number and energy not assigned to the lowest bin are assigned to the underflow.

        If a bin in self.eng is above the highest bin in out_eng, a warning is thrown, the values are simply discarded, and the total number and energy can no longer be conserved. 

        Parameters
        ----------
        out_eng : ndarray
            The new abscissa to bin into.

        Returns
        -------
        None


        Notes
        -----

        Total number and energy are conserved by assigning the number of particles :math:`N` in a bin of energy :math:`E` to two adjacent bins in the new abscissa out_eng, with energies :math:`E_\\text{low}` and :math:`E_\\text{upp}` such that :math:`E_\\text{low} < E < E_\\text{upp}`\ . The number of particles :math:`N_\\text{low}` and :math:`N_\\text{upp}` assigned to these two bins are given by

        .. math::

            N_\\text{low} &= \\frac{E_\\text{upp} - E}{E_\\text{upp} - E_\\text{low}} N \\,, \\\\
            N_\\text{upp} &= \\frac{E - E_\\text{low}}{E_\\text{upp} - E_\\text{low}} N

        Rebinning works best when going from a finer binning to a coarser binning. Going the other way can result in spiky features, since the coarser binning simply does not contain enough information to reconstruct the finer binning in this way.

        See Also
        --------
        :func:`.spectools.rebin_N_arr`

        """

        if not np.all(np.diff(out_eng) > 0):
            raise TypeError(
                "new abscissa must be ordered in increasing energy.")
        # if out_eng[-1] < self.eng[-1]:
        #     raise OverflowError("the new abscissa lies below the old one: this function cannot handle overflow (yet?).")
        # Get the bin indices that the current abscissa (self.eng) corresponds to in the new abscissa (new_eng). Can be any number between 0 and self.length-1. Bin indices are wrt the bin centers.

        # Add an additional bin at the lower end of out_eng so that underflow can be treated easily.

        # Forces out_eng to be float, avoids strange problems with np.insert
        # below if out_eng is of type int.

        out_eng = out_eng.astype(float)

        first_bin_eng = np.exp(
            np.log(out_eng[0]) - (np.log(out_eng[1]) - np.log(out_eng[0])))

        new_eng = np.insert(out_eng, 0, first_bin_eng)

        # Find the relative bin indices for self.eng wrt new_eng. The first bin in new_eng has bin index -1.

        bin_ind_interp = interp1d(new_eng,
                                  np.arange(new_eng.size) - 1,
                                  bounds_error=False,
                                  fill_value=(-2, new_eng.size))

        bin_ind = bin_ind_interp(self.eng)

        # bin_ind = np.interp(self.eng, new_eng,
        #     np.arange(new_eng.size)-1, left = -2, right = new_eng.size)

        # Locate where bin_ind is below 0, above self.length-1 and in between.
        ind_low = np.where(bin_ind < 0)
        ind_high = np.where(bin_ind == new_eng.size)
        ind_reg = np.where((bin_ind >= 0) & (bin_ind <= new_eng.size - 1))

        if ind_high[0].size > 0:
            warnings.warn(
                "The new abscissa lies below the old one: only bins that lie within the new abscissa will be rebinned, bins above the abscissa will be discarded.",
                RuntimeWarning)
            # raise OverflowError("the new abscissa lies below the old one: this function cannot handle overflow (yet?).")

        # Get the total N and toteng in each bin of self._data
        if self._spec_type == 'dNdE':
            N_arr = self.totN('bin')
            toteng_arr = self.toteng('bin')
        elif self._spec_type == 'N':
            N_arr = self.N
            toteng_arr = self.N * self.eng

        N_arr_low = N_arr[ind_low]
        N_arr_high = N_arr[ind_high]
        N_arr_reg = N_arr[ind_reg]

        toteng_arr_low = toteng_arr[ind_low]

        # Bin width of the new array. Use only the log bin width, so that dN/dE = N/(E d log E)
        if self._spec_type == 'dNdE':
            new_E_dlogE = new_eng * get_log_bin_width(new_eng)

        # Regular bins first, done in a completely vectorized fashion.

        # reg_bin_low is the array of the lower bins to be allocated the particles in N_arr_reg, similarly reg_bin_upp. This should also take care of the fact that bin_ind is an integer.
        reg_bin_low = np.floor(bin_ind[ind_reg]).astype(int)
        reg_bin_upp = reg_bin_low + 1

        # Takes care of the case where eng[-1] = new_eng[-1]
        reg_bin_low[reg_bin_low == new_eng.size - 2] = new_eng.size - 3
        reg_bin_upp[reg_bin_upp == new_eng.size - 1] = new_eng.size - 2

        if self._spec_type == 'dNdE':
            reg_dNdE_low = ((reg_bin_upp - bin_ind[ind_reg]) * N_arr_reg /
                            new_E_dlogE[reg_bin_low + 1])
            reg_dNdE_upp = ((bin_ind[ind_reg] - reg_bin_low) * N_arr_reg /
                            new_E_dlogE[reg_bin_upp + 1])
        elif self._spec_type == 'N':
            reg_N_low = (reg_bin_upp - bin_ind[ind_reg]) * N_arr_reg
            reg_N_upp = (bin_ind[ind_reg] - reg_bin_low) * N_arr_reg

        # Low bins.
        low_bin_low = np.floor(bin_ind[ind_low]).astype(int)
        N_above_underflow = np.sum(
            (bin_ind[ind_low] - low_bin_low) * N_arr_low)
        eng_above_underflow = N_above_underflow * new_eng[1]

        N_underflow = np.sum(N_arr_low) - N_above_underflow
        eng_underflow = np.sum(toteng_arr_low) - eng_above_underflow
        if self._spec_type == 'dNdE':
            low_dNdE = N_above_underflow / new_E_dlogE[1]

        # Add up, obtain the new data.
        new_data = np.zeros(new_eng.size)
        if self._spec_type == 'dNdE':
            new_data[1] += low_dNdE
            # reg_dNdE_low = -1 refers to new_eng[0]
            np.add.at(new_data, reg_bin_low + 1, reg_dNdE_low)
            np.add.at(new_data, reg_bin_upp + 1, reg_dNdE_upp)
            # print(new_data[reg_bin_low+1])
            # new_data[reg_bin_low+1] += reg_dNdE_low
            # new_data[reg_bin_upp+1] += reg_dNdE_upp
        elif self._spec_type == 'N':
            new_data[1] += N_above_underflow
            np.add.at(new_data, reg_bin_low + 1, reg_N_low)
            np.add.at(new_data, reg_bin_upp + 1, reg_N_upp)
            # new_data[reg_bin_low+1] += reg_N_low
            # new_data[reg_bin_upp+1] += reg_N_upp

        # Implement changes.
        self.eng = new_eng[1:]
        self._data = new_data[1:]
        self.length = self.eng.size
        self.underflow['N'] += N_underflow
        self.underflow['eng'] += eng_underflow
コード例 #10
0
 def dNdE(self):
     if self._spec_type == 'dNdE':
         return self._data
     elif self._spec_type == 'N':
         return self._data / (self.eng * get_log_bin_width(self.eng))
コード例 #11
0
    def toteng(self, bound_type=None, bound_arr=None):
        """Returns the total energy of particles in part of the spectrum.

        The part of the spectrum can be specified in two ways, and is specified by bound_type. Multiple totals can be obtained through bound_arr.

        Parameters
        ----------
        bound_type : {'bin', 'eng', None}
            The type of bounds to use. Bound values do not have to be within the [0:length] for 'bin' or within the abscissa for 'eng'. None should only be used to obtain the total energy.

            Specifying ``bound_type='bin'`` without bound_arr gives the total energy in each bin.

        bound_arr : ndarray of length N, optional
            An array of boundaries (bin or energy), between which the total number of particles will be computed. If unspecified, the total number of particles in the whole spectrum is computed.

            For 'bin', bounds are specified as the bin *boundary*, with 0 being the left most boundary, 1 the right-hand of the first bin and so on. This is equivalent to integrating over a histogram. For 'eng', bounds are specified by energy values.

            These boundaries need not be integer values for 'bin': specifying np.array([0.5, 1.5]) for example will include half of the first bin and half of the second.


        Returns
        -------
        ndarray of length N-1, or float
            Total energy in the spectrum or between the specified boundaries.

        Examples
        ---------
        >>> eng = np.array([1, 10, 100, 1000])
        >>> N   = np.array([1, 2, 3, 4])
        >>> spec = Spectrum(eng, N, spec_type='N')
        >>> spec.toteng()
        4321.0
        >>> spec.toteng('bin', np.array([1, 3]))
        array([320.])
        >>> spec.toteng('eng', np.array([10, 1e4]))
        array([4310.])

        See Also
        ---------
        :meth:`.Spectrum.totN`
        
        """
        eng = self.eng
        length = self.length
        log_bin_width = get_log_bin_width(self.eng)

        if self._spec_type == 'dNdE':
            dNdlogE = self.eng * self.dNdE
        elif self._spec_type == 'N':
            dNdlogE = self.N / log_bin_width

        if bound_type is not None:

            if bound_arr is None:

                return dNdlogE * eng * log_bin_width

            if bound_type == 'bin':

                if not all(np.diff(bound_arr) >= 0):

                    raise TypeError("bound_arr must have increasing entries.")

                eng_in_bin = np.zeros(bound_arr.size - 1)

                if bound_arr[0] > length or bound_arr[-1] < 0:
                    return eng_in_bin

                for low, upp, i in zip(bound_arr[:-1], bound_arr[1:],
                                       np.arange(eng_in_bin.size)):

                    if low > length or upp < 0:
                        eng_in_bin[i] = 0
                        continue

                    low_ceil = int(np.ceil(low))
                    low_floor = int(np.floor(low))
                    upp_ceil = int(np.ceil(upp))
                    upp_floor = int(np.floor(upp))
                    # Sum the bins that are completely between the bounds.
                    eng_full_bins = np.dot(
                        eng[low_ceil:upp_floor] * dNdlogE[low_ceil:upp_floor],
                        log_bin_width[low_ceil:upp_floor])

                    eng_part_bins = 0

                    if low_floor == upp_floor or low_ceil == upp_ceil:
                        # Bin indices are within the same bin. The second requirement covers the case where upp_ceil is length.
                        eng_part_bins += (eng[low_floor] * dNdlogE[low_floor] *
                                          (upp - low) *
                                          log_bin_width[low_floor])
                    else:
                        # Add up part of the bin for the low partial bin and the high partial bin.
                        eng_part_bins += (eng[low_floor] * dNdlogE[low_floor] *
                                          (low_ceil - low) *
                                          log_bin_width[low_floor])
                        if upp_floor < length:
                            # If upp_floor is length, then there is no partial bin for the upper index.
                            eng_part_bins += (eng[upp_floor] *
                                              dNdlogE[upp_floor] *
                                              (upp - upp_floor) *
                                              log_bin_width[upp_floor])

                    eng_in_bin[i] = eng_full_bins + eng_part_bins

                return eng_in_bin

            if bound_type == 'eng':
                bin_boundary = get_bin_bound(self.eng)
                eng_bin_ind = np.interp(np.log(bound_arr),
                                        np.log(bin_boundary),
                                        np.arange(bin_boundary.size),
                                        left=0,
                                        right=length + 1)

                return self.toteng('bin', eng_bin_ind)

        else:
            return (np.dot(dNdlogE, eng * log_bin_width) +
                    self.underflow['eng'])