def batch_analysis_c6(meta_file, cfg_file, wgt_file, thresh, nms, img_path, xml_path): image_list = listdir(img_path, '.jpg') image_num = len(image_list) meta = dn.load_meta(meta_file) net = dn.load_net(cfg_file, wgt_file, 0) # meta_fr = dn.load_meta(meta_file_fr) # net_fr = dn.load_net(cfg_file_fr,wgt_file_fr,0) move_count = 0 for j, image_path in enumerate(image_list): print(str(j) + '/' + str(image_num) + " " + image_path) image_name = getFileName(image_path) img_save_path = os.path.join(img_path, image_name + '.jpg') xml_save_path = os.path.join(xml_path, image_name + '.xml') # if os.path.exists(xml_save_path): # continue # print(img_save_path) det = dn.detect_ext(net, meta, bytes(image_path, 'utf-8'), thresh) # det_fr = dn.detect_ext(net_fr, meta_fr, bytes(image_path,'utf-8'),thresh) img = cv2.imread(image_path) if img is None: print('Can not open image') continue h, w, c = img.shape writeXml(xml_save_path, w, h, image_name, det) dn.free_net(net)
def batch_analysis(weights_list_file, cfg_file, meta_file, image_list_file, thresh, iou_thresh, result_dir): image_list = LoadFileList(image_list_file) image_num = len(image_list) weights_list = LoadFileList(weights_list_file) meta = dn.load_meta(meta_file) # print(meta.classes) object_type = [ meta.names[i].decode('utf-8').strip() for i in range(meta.classes) ] result = [] for weights in weights_list: weights_name = getFileName(weights) result_path = os.path.join(result_dir, weights_name) if not os.path.exists(result_path): os.mkdir(result_path) net = dn.load_net(cfg_file, bytes(weights, 'utf-8'), 0) # detect result and save to text for j, image_path in enumerate(image_list): print('detect: ' + str(j + 1) + '/' + str(len(image_list))) label_path = imagePath2labelPath(image_path) image_name = getFileName(image_path) det_save_path = os.path.join(result_path, image_name + '.txt') # print(img_save_path) det = dn.detect_ext(net, meta, bytes(image_path, 'utf-8'), thresh) # save detection result to text saveDetRes(det[0], det_save_path, object_type) time.sleep(0.001) # dn.free_net(net) # campare label and detection result for i, objtype in enumerate(object_type): # if objtype != 'fr': # continue total_label = 0 total_detect = 0 total_corr = 0 total_iou = 0 cmp_result = [] # print(objtype) for j, image_path in enumerate(image_list): label_path = imagePath2labelPath(image_path) image_name = getFileName(image_path) img_save_path = os.path.join(result_path, image_name + '.jpg') det_save_path = os.path.join(result_path, image_name + '.txt') # print(img_save_path) label = [] if os.path.exists(label_path): label = LoadLabel(label_path, object_type) # save detection result to text det = readDetRes(det_save_path) for d in det: if d[0] > len(object_type) - 1: d[0] = ' ' continue d[0] = object_type[d[0]] # print(label) # print(det) # print('') if i > 0: image_path = img_save_path # print(j,image_path) img = cv2.imread(image_path) if img is None: print( "load image error&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ) # print(img.shape) cmp_res = cdl.cmp_data(objtype, det, label, thresh, iou_thresh, img) cmp_res.update_tracking({'image_name': image_name}) total_corr += cmp_res['correct'] total_iou += cmp_res['avg_iou'] * cmp_res['label_num'] cmp_result.append(cmp_res) print("%s: %d/%d label: %d detect: %d correct: %d recall: %f avg_iou: %f accuracy: %f precision: %f\n" % \ (str(objtype),j+1,image_num,cmp_res['label_num'],cmp_res['detect_num'],\ cmp_res['correct'],cmp_res['recall'],cmp_res['avg_iou'],\ cmp_res['accuracy'],cmp_res['precision'])) total_label += cmp_res['label_num'] total_detect += cmp_res['detect_num'] cv2.imwrite(img_save_path, img) time.sleep(0.001) #数据集分析结果 avg_recall = 0 if total_label > 0: avg_recall = total_corr / float(total_label) avg_iou = 0 if total_iou > 0: avg_iou = total_iou / total_label avg_acc = 0 if total_label + total_detect - total_corr > 0: avg_acc = float(total_corr) / (total_label + total_detect - total_corr) avg_precision = 0 if total_detect > 0: avg_precision = float(total_corr) / total_detect total_result = [ total_label, total_detect, total_corr, avg_recall, avg_iou, avg_acc, avg_precision ] cdl.ExportAnaRes(objtype, cmp_result, total_result, image_path, result_path) print("total_label: %d total_detect: %d total_corr: %d recall: %f average iou: %f accuracy: %f precision: %f \n" % \ (total_result[0],total_result[1],total_result[2],total_result[3],total_result[4],total_result[5],total_result[6])) result.append([weights_name] + [objtype] + total_result) # dn.free_net(net) cdl.ExportAnaResAll(result, result_dir) time.sleep(0.001)
def batch_analysis(weights_list_file, image_list_file, thresh, iou_thresh, result_dir): image_list = LoadFileList(image_list_file) image_num = len(image_list) weights_list = LoadFileList(weights_list_file) result = [] for weights in weights_list: weights_name = getFileName(weights) # print('weights_name: ',weights) meta_file, cfg_file = getMetaCfgName(weights) # meta = dn.load_meta(meta_file) # net = dn.load_net(cfg_file,bytes(weights,'utf-8'),0) # 选择对应的dn meta = dn.load_meta(meta_file) net = dn.load_net(cfg_file, bytes(weights, 'utf-8'), 0) object_type = [ meta.names[i].decode('utf-8').strip() for i in range(meta.classes) ] result_path = os.path.join(result_dir, weights_name) if not os.path.exists(result_path): os.mkdir(result_path) # detect result and save to text timeall = 0 for j, image_path in enumerate(image_list): print('detect: ' + str(j + 1) + '/' + str(len(image_list))) label_path = imagePath2labelPath(image_path) image_name = getFileName(image_path) det_save_path = os.path.join(result_path, image_name + '.txt') # det = dn.detect_ext(net, meta, bytes(image_path,'utf-8'),thresh) # 选择对应的dn det, time1 = dn.detect_ext(net, meta, bytes(image_path, 'utf-8'), thresh) timeall = timeall + time1 # save detection result to text saveDetRes(det, det_save_path, object_type) time.sleep(0.001) print('xxxxxxxxxxx', 'FPS, ', len(image_list) / timeall) # dn.free_net(net) # campare label and detection result for i, objtype in enumerate(object_type): # if objtype != 'fr': # continue total_label = 0 total_detect = 0 total_corr = 0 total_iou = 0 cmp_result = [] det_ = [] annopath = [] detall = [['name', 'obj_type', 'score', 0, 0, 0, 0]] # 此处为xywh(中心),应该变为xmin,ymin,xmax,ymax imagesetfile = [] for j, image_path in enumerate(image_list): label_path = imagePath2labelPath(image_path) image_name = getFileName(image_path) imagesetfile.append(image_name) img_save_path = os.path.join(result_path, image_name + '.jpg') det_save_path = os.path.join(result_path, image_name + '.txt') # detpath.append(det_save_path) annopath.append(label_path) # print(img_save_path) label = [] if os.path.exists(label_path): label = LoadLabel(label_path, object_type) # save detection result to text det = readDetRes(det_save_path) for d in det: if d[0] > len(object_type) - 1: d[0] = ' ' continue d[0] = object_type[d[0]] for d in det: xmin = float(copy.deepcopy( d[2])) - float(copy.deepcopy(d[4])) / 2.0 ymin = float(copy.deepcopy( d[3])) - float(copy.deepcopy(d[5])) / 2.0 xmax = float(copy.deepcopy( d[2])) + float(copy.deepcopy(d[4])) / 2.0 ymax = float(copy.deepcopy( d[3])) + float(copy.deepcopy(d[5])) / 2.0 # 该文件格式:imagename1 type confidence xmin ymin xmax ymax d_ = [image_name, d[0], d[1], xmin, ymin, xmax, ymax] det_.append(d_) if len(det_) != 0: detall = numpy.vstack((detall, det_)) det_ = [] if i > 0: image_path = img_save_path # print(j,image_path) img = cv2.imread(image_path) if img is None: print( "load image error&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ) continue cmp_res = cdl.cmp_data(objtype, det, label, thresh, iou_thresh, img) cmp_res.update_tracking({'image_name': image_name}) total_corr += cmp_res['correct'] total_iou += cmp_res['avg_iou'] * cmp_res['label_num'] cmp_result.append(cmp_res) print("%s: %d/%d label: %d detect: %d correct: %d recall: %f avg_iou: %f accuracy: %f precision: %f\n" % \ (str(objtype),j+1,image_num,cmp_res['label_num'],cmp_res['detect_num'],\ cmp_res['correct'],cmp_res['recall'],cmp_res['avg_iou'],\ cmp_res['accuracy'],cmp_res['precision'])) total_label += cmp_res['label_num'] total_detect += cmp_res['detect_num'] cv2.imwrite(img_save_path, img) img = [] time.sleep(0.001) # 求出AP值 ap = 0 # detall = numpy.delete(detall, 0, axis = 0) # det_objtype = [obj for obj in detall if obj[1] == objtype] # if len(det_objtype) == 0: # ap = 0 # else: # ap = voc_eval(det_objtype, annopath, imagesetfile, objtype, iou_thresh) # detall=[] #数据集分析结果 avg_recall = 0 if total_label > 0: avg_recall = total_corr / float(total_label) avg_iou = 0 if total_iou > 0: avg_iou = total_iou / total_label avg_acc = 0 if total_label + total_detect - total_corr > 0: avg_acc = float(total_corr) / (total_label + total_detect - total_corr) avg_precision = 0 if total_detect > 0: avg_precision = float(total_corr) / total_detect total_result = [ total_label, total_detect, total_corr, avg_recall, avg_iou, avg_acc, avg_precision ] cdl.ExportAnaRes(objtype, cmp_result, total_result, image_path, result_path) print("total_label: %d total_detect: %d total_corr: %d recall: %f average iou: %f accuracy: %f precision: %f ap: %f\n" % \ (total_result[0],total_result[1],total_result[2],total_result[3],total_result[4],total_result[5],total_result[6],ap)) result.append([weights_name] + [objtype] + total_result + [float(ap)]) cdl.ExportAnaResAll(result, result_dir) time.sleep(0.001)
def batch_analysis(meta_file, cfg_file, wgt_file, thresh, nms, src_path, dst_path): image_list = listdir(src_path) image_list.sort() image_num = len(image_list) meta = dn.load_meta(meta_file) object_type = [ meta.names[i].decode('utf-8').strip() for i in range(meta.classes) ] net = dn.load_net(cfg_file, wgt_file, 0) move_count = 0 boxes_last = [] for j, image_path in enumerate(image_list): print(str(j) + '/' + str(image_num) + " moved: " + str(move_count)) # print(image_path) try: img = cv2.imread(image_path) except: print( 'can not read image******************************************') continue h, w = img.shape[:2] image_name = getFileName(image_path) print("image_name", image_name) image_name = image_name.replace('(', '1_') image_name = image_name.replace(')', '_1') img_save_path = os.path.join(dst_path, image_name + '.jpg') # print(img_save_path) det = dn.detect_ext(net, meta, bytes(image_path, 'utf-8'), thresh) boxes = [] is_move_file = False if j % 20 == 0: #20数值越大 比对iou的间隔越大 is_move_file = True for d in det: # try: # img = cv2.imread(image_path) # except: # print('can not read image******************************************') # continue # h,w = img.shape[:2] print("d", d) boxes.append(d[2:]) bw = d[4] * w bh = d[5] * h # if bw < 20 or bh < 20: # print("bw or bh is less than 20") # continue # obj_type = d[0] # if obj_type == 'tricycle': # print("tricycle ************************************************") # is_move_file = True # break # elif obj_type == 'car': # if bw*bh/(w*h) > 0.25: # print("big car ....................................................") # is_move_file = True # break if boxes_last != [] and boxes != []: iou = batch_iou(boxes_last, boxes, w, h) # print('iou: '+str(iou)) if iou > 0.6: print('batch iou: ' + str(iou)) is_move_file = False print("iou^^^^^^^^^^^^^^^^^^^^^^^^^") # continue if is_move_file: move_count += 1 if not os.path.exists(img_save_path): mymovefile(image_path, img_save_path) boxes_last = boxes dn.free_net(net)