コード例 #1
0
def test():
    rospy.init_node('localizer_client')
    l = Localizer()

    # Fake data
    bb = BoundingBoxes()
    bb.bounding_boxes = []
    bb.image = Image()

    b1 = BoundingBox()
    b1.Class = "start_gate_pole"

    b2 = BoundingBox()
    b2.Class = "dice1"

    b3 = BoundingBox()
    b3.Class = "dice2"

    b4 = BoundingBox()
    b4.Class = "random"

    bb.bounding_boxes.append(b1)
    bb.bounding_boxes.append(b2)
    bb.bounding_boxes.append(b3)
    bb.bounding_boxes.append(b4)
    l.boxes_received(bb)

    try:
        rospy.spin()
    except rospy.ROSInterruptException:
        sys.exit()
コード例 #2
0
    def camera_image_callback(self, image, camera):
        """Gets images from camera to generate detections on

        Computes where the bounding boxes should be in the image, and
        fakes YOLO bounding boxes output as well as publishing a debug
        image showing where the detections are if turned on

        Parameters
        ----------
        image : sensor_msgs.Image
            The image from the camera to create detections for
        camera : Camera
            Holds camera parameters for projecting points

        """

        cv_image = self.bridge.imgmsg_to_cv2(image, desired_encoding="rgb8")

        if camera.is_ready():

            # Fake darknet yolo detections message
            bounding_boxes = BoundingBoxes()

            bounding_boxes.header = image.header
            bounding_boxes.image_header = image.header
            bounding_boxes.image = image
            bounding_boxes.bounding_boxes = []

            for _, obj in self.objects.iteritems():

                detections = self.get_detections(obj, camera, image.header.stamp)

                if detections is not None:

                    if camera.debug_image_pub:

                        self.render_debug_context(cv_image, detections, camera)

                    for det in detections:

                        bounding_box = BoundingBox()

                        bounding_box.Class = det[2]
                        bounding_box.probability = 1.0
                        bounding_box.xmin = int(det[0][0])
                        bounding_box.xmax = int(det[0][1])
                        bounding_box.ymin = int(det[0][2])
                        bounding_box.ymax = int(det[0][3])
                        bounding_boxes.bounding_boxes.append(bounding_box)

            # Only publish detection if there are boxes in it
            if bounding_boxes.bounding_boxes:
                self.darknet_detection_pub.publish(bounding_boxes)

        if camera.debug_image_pub:
            image_message = self.bridge.cv2_to_imgmsg(cv_image, encoding="rgb8")
            camera.debug_image_pub.publish(image_message)