コード例 #1
0
    def load_qa(self):

        cam = self.selected_arm + str(self.selected_spectrograph)

        mergedqa = QLFModels().get_output(self.selected_process_id, cam)

        gen_info = mergedqa['GENERAL_INFO']
        flavor = mergedqa['FLAVOR']

        if flavor == "science":
            ra = gen_info['RA']
            dec = gen_info['DEC']

        check_ccds = mergedqa['TASKS']['CHECK_CCDs']

        xwsigma = check_ccds['METRICS']['XWSIGMA']
        xw_amp = check_ccds['METRICS']['XWSIGMA_AMP']

        xw_fib = check_ccds['METRICS']['XWSIGMA_FIB']

        nrg = check_ccds['PARAMS']['XWSIGMA_NORMAL_RANGE']
        wrg = check_ccds['PARAMS']['XWSIGMA_WARN_RANGE']
        obj_type = sort_obj(gen_info)  # [""]*500

        if mergedqa['FLAVOR'].upper() == 'SCIENCE':
            program = mergedqa['GENERAL_INFO']['PROGRAM'].upper()
            program_prefix = '_' + program
        else:
            program_prefix = ''
        xw_ref = check_ccds['PARAMS']['XWSIGMA' + program_prefix + '_REF']

        xsigma = xw_fib[0]
        wsigma = xw_fib[1]

        delta_rg = wrg[1] - wrg[0]
        hist_rg = (wrg[0] - 0.1 * delta_rg, wrg[1] + 0.1 * delta_rg)

        my_palette = get_palette("RdYlBu_r")

        xfiber = np.arange(len(xsigma))
        wfiber = np.arange(len(wsigma))
        if mergedqa['FLAVOR'].upper() != 'SCIENCE':
            ra = np.full(500, np.nan)
            dec = np.full(500, np.nan)

        source = ColumnDataSource(
            data={
                'x1': ra,
                'y1': dec,
                'xsigma': xsigma,
                'wsigma': wsigma,
                'delta_xsigma': np.array(xsigma) - xw_ref[0],
                'delta_wsigma': np.array(wsigma) - xw_ref[1],
                'xref': [xw_ref[0]] * len(xsigma),
                'wref': [xw_ref[1]] * len(xsigma),
                'xfiber': xfiber,
                'wfiber': wfiber,
                'OBJ_TYPE': obj_type,
                'left': np.arange(0, 500) - 0.4,
                'right': np.arange(0, 500) + 0.4,
                'bottom': [0] * 500
            })

        xsigma_tooltip = """
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">XSigma: </span>
                    <span style="font-size: 1vw; color: #515151">@xsigma</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Reference: </span>
                    <span style="font-size: 1vw; color: #515151">@xref</span>
                </div>

                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Obj Type: </span>
                    <span style="font-size: 1vw; color: #515151;">@OBJ_TYPE</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">RA: </span>
                    <span style="font-size: 1vw; color: #515151;">@x1</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">DEC: </span>
                    <span style="font-size: 1vw; color: #515151;">@y1</span>
                </div>

                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">FIBER ID: </span>
                    <span style="font-size: 1vw; color: #515151;">@xfiber</span>
                </div>

                </div>
            """

        wsigma_tooltip = """
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">WSigma: </span>
                    <span style="font-size: 1vw; color: #515151">@wsigma</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Reference: </span>
                    <span style="font-size: 1vw; color: #515151">@wref</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Obj Type: </span>
                    <span style="font-size: 1vw; color: #515151;">@OBJ_TYPE</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">RA: </span>
                    <span style="font-size: 1vw; color: #515151;">@x1</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">DEC: </span>
                    <span style="font-size: 1vw; color: #515151;">@y1</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">FIBER ID: </span>
                    <span style="font-size: 1vw; color: #515151;">@wfiber</span>
                </div>

            </div>
            """

        url = "http://legacysurvey.org/viewer?ra=@ra&dec=@dec&zoom=16&layer=decals-dr5"

        # determining the position of selected cam fibers:
        obj_type = sort_obj(gen_info)
        # ---------------------------------

        if flavor == "science":

            # axes limit
            xmin, xmax = [min(ra[:]), max(ra[:])]
            ymin, ymax = [min(dec[:]), max(dec[:])]
            xfac, yfac = [(xmax - xmin) * 0.06, (ymax - ymin) * 0.06]
            left, right = xmin - xfac, xmax + xfac
            bottom, top = ymin - yfac, ymax + yfac

            low, high = wrg
            xmapper = LinearColorMapper(palette=my_palette,
                                        low=low,
                                        high=high,
                                        nan_color="darkgrey")

            wmapper = LinearColorMapper(palette=my_palette,
                                        low=low,
                                        high=high,
                                        nan_color="darkgrey")

            # ============
            # XSIGMA WEDGE

            radius = 0.0165
            radius_hover = 0.02

            # centralize wedges in plots:
            ra_center = 0.5 * (max(ra) + min(ra))
            dec_center = 0.5 * (max(dec) + min(dec))
            xrange_wedge = Range1d(start=ra_center + .95, end=ra_center - .95)
            yrange_wedge = Range1d(start=dec_center + .82,
                                   end=dec_center - .82)

            wedge_plot_x = Plot2d(x_range=xrange_wedge,
                                  y_range=yrange_wedge,
                                  x_label="RA",
                                  y_label="DEC",
                                  tooltip=xsigma_tooltip,
                                  title="XSIGMA",
                                  width=500,
                                  height=380,
                                  yscale="auto").wedge(
                                      source,
                                      x='x1',
                                      y='y1',
                                      field='delta_xsigma',
                                      mapper=xmapper,
                                      colorbar_title='xsigma').plot

            taptool = wedge_plot_x.select(type=TapTool)
            taptool.callback = OpenURL(url=url)

            # ============
            # WSIGMA WEDGE
            wedge_plot_w = Plot2d(x_range=xrange_wedge,
                                  y_range=yrange_wedge,
                                  x_label="RA",
                                  y_label="DEC",
                                  tooltip=wsigma_tooltip,
                                  title="WSIGMA",
                                  width=500,
                                  height=380,
                                  yscale="auto").wedge(
                                      source,
                                      x='x1',
                                      y='y1',
                                      field='delta_wsigma',
                                      mapper=wmapper,
                                      colorbar_title='wsigma').plot

            taptool = wedge_plot_w.select(type=TapTool)
            taptool.callback = OpenURL(url=url)

        # ================================
        # Stat histogram

        # x_fiber_hist
        d_yplt = (max(xsigma) - min(xsigma)) * 0.1
        yrange = [0, max(xsigma) + d_yplt]

        xhist = Plot2d(
            yrange,
            x_label="Fiber number",
            y_label="X std dev (number of pixels)",
            tooltip=xsigma_tooltip,
            title="",
            width=600,
            height=300,
            yscale="auto",
            hover_mode="vline",
        ).quad(
            source,
            top='xsigma',
        )

        # w_fiber_hist
        d_yplt = (max(wsigma) - min(wsigma)) * 0.1
        yrange = [0, max(wsigma) + d_yplt]

        whist = Plot2d(
            yrange,
            x_label="Fiber number",
            y_label="W std dev (number of pixels)",
            tooltip=xsigma_tooltip,
            title="",
            width=600,
            height=300,
            yscale="auto",
            hover_mode="vline",
        ).quad(
            source,
            top='wsigma',
        )

        # ================================
        # Stat histogram

        def histpar(yscale, hist):
            if yscale == 'log':
                ylabel = "Frequency + 1"
                yrange = (1, 11**(int(np.log10(max(hist))) + 1))
                bottomval = 'bottomplusone'
                histval = 'histplusone'
            else:
                ylabel = "Frequency"
                yrange = (0.0 * max(hist), 1.1 * max(hist))
                bottomval = 'bottom'
                histval = 'hist'
            return [ylabel, yrange, bottomval, histval]

        xhistlabel = "XSIGMA"
        yscale = "auto"

        hist_tooltip_x = """
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Frequency: </span>
                    <span style="font-size: 1vw; color: #515151">@hist</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">XSIGMA: </span>
                    <span style="font-size: 1vw; color: #515151;">[@left, @right]</span>
                </div>
            </div>
        """

        hist, edges = np.histogram(xsigma, 'sqrt')

        source_hist = ColumnDataSource(
            data={
                'hist': hist,
                'histplusone': hist + 1,
                'bottom': [0] * len(hist),
                'bottomplusone': [1] * len(hist),
                'left': edges[:-1],
                'right': edges[1:]
            })

        ylabel, yrange, bottomval, histval = histpar(yscale, hist)

        p_hist_x = Plot2d(
            x_label=xhistlabel,
            y_label=ylabel,
            tooltip=hist_tooltip_x,
            title="",
            width=600,
            height=300,
            yscale="auto",
            y_range=yrange,
            x_range=(hist_rg[0] + xw_ref[0], hist_rg[1] + xw_ref[0]),
            hover_mode="vline",
        ).quad(
            source_hist,
            top=histval,
            bottom=bottomval,
            line_width=0.4,
        )

        # Histogram 2
        xhistlabel = "WSIGMA"
        hist_tooltip_w = """
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Frequency: </span>
                    <span style="font-size: 1vw; color: #515151">@hist</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">WSIGMA: </span>
                    <span style="font-size: 1vw; color: #515151;">[@left, @right]</span>
                </div>
            </div>
        """

        hist, edges = np.histogram(wsigma, 'sqrt')

        source_hist = ColumnDataSource(
            data={
                'hist': hist,
                'histplusone': hist + 1,
                'bottom': [0] * len(hist),
                'bottomplusone': [1] * len(hist),
                'left': edges[:-1],
                'right': edges[1:]
            })

        ylabel, yrange, bottomval, histval = histpar(yscale, hist)
        yrangew = yrange

        p_hist_w = Plot2d(
            x_label=xhistlabel,
            y_label=ylabel,
            tooltip=hist_tooltip_w,
            title="",
            width=600,
            height=300,
            yscale="auto",
            y_range=yrange,
            x_range=(hist_rg[0] + xw_ref[1], hist_rg[1] + xw_ref[1]),
            hover_mode="vline",
        ).quad(
            source_hist,
            top=histval,
            bottom=bottomval,
            line_width=0.8,
        )

        # --------------------------------------------------------------
        # vlines ranges:
        bname = 'XWSIGMA'

        for ialert in nrg:  # par[bname+'_NORMAL_RANGE']:
            spans = Span(location=ialert + xw_ref[0],
                         dimension='height',
                         line_color='green',
                         line_dash='dashed',
                         line_width=2)
            p_hist_x.add_layout(spans)
            my_label = Label(x=ialert + xw_ref[0],
                             y=yrange[-1] / 2.2,
                             y_units='data',
                             text='Normal Range',
                             text_color='green',
                             angle=np.pi / 2.)
            p_hist_x.add_layout(my_label)

        for ialert in wrg:  # par[bname+'_WARN_RANGE']:
            spans = Span(location=ialert + xw_ref[0],
                         dimension='height',
                         line_color='tomato',
                         line_dash='dotdash',
                         line_width=2)
            p_hist_x.add_layout(spans)
            my_label = Label(x=ialert + xw_ref[0],
                             y=yrange[-1] / 2.2,
                             y_units='data',
                             text='Warning Range',
                             text_color='tomato',
                             angle=np.pi / 2.)
            p_hist_x.add_layout(my_label)

        for ialert in nrg:  # par[bname+'_NORMAL_RANGE']:
            spans = Span(location=ialert + xw_ref[1],
                         dimension='height',
                         line_color='green',
                         line_dash='dashed',
                         line_width=2)
            p_hist_w.add_layout(spans)
            my_label = Label(x=ialert + xw_ref[1],
                             y=yrangew[-1] / 2.2,
                             y_units='data',
                             text='Normal Range',
                             text_color='green',
                             angle=np.pi / 2.)
            p_hist_w.add_layout(my_label)

        for ialert in wrg:  # par[bname+'_WARN_RANGE']:
            spans = Span(location=ialert + xw_ref[1],
                         dimension='height',
                         line_color='tomato',
                         line_dash='dotdash',
                         line_width=2)
            p_hist_w.add_layout(spans)
            my_label = Label(x=ialert + xw_ref[1],
                             y=yrangew[-1] / 2.2,
                             y_units='data',
                             text='Warning Range',
                             text_color='tomato',
                             angle=np.pi / 2.)
            p_hist_w.add_layout(my_label)

        # amp 1
        xamp = Patch().plot_amp(
            dz=xw_amp[0],
            refexp=[xw_ref[0]] * 4,
            name="XSIGMA AMP",
            description="X standard deviation per Amp (number of pixels)",
            wrg=wrg)

        # amp 2
        wamp = Patch().plot_amp(
            dz=xw_amp[1],
            refexp=[xw_ref[1]] * 4,
            name="WSIGMA AMP",
            description="W standard deviation per Amp (number of pixels)",
            wrg=wrg)

        # -------------------------------------------------------------------------
        info_col = Title().write_description('xwsigma')

        current_exposures = check_ccds['METRICS']['XWSIGMA']

        alert_x = Table().alert_table(nrg, wrg)
        alert_w = Table().alert_table(nrg, wrg)

        if flavor == 'science':
            program = gen_info['PROGRAM'].upper()
            reference_exposures = check_ccds['PARAMS']['XWSIGMA_' + program +
                                                       '_REF']
            keynames = ["XSIGMA"]
            x_metric = Table().reference_table(keynames,
                                               [current_exposures[0]],
                                               [reference_exposures[0]])
            keynames = ["WSIGMA"]
            w_metric = Table().reference_table(keynames,
                                               [current_exposures[1]],
                                               [reference_exposures[1]])
            layout = column(
                info_col,
                widgetbox(Div(), css_classes=["tableranges"]),
                widgetbox(
                    Div(text=
                        '<h2 align=center style="text-align:center;">  XSIGMA </h2>'
                        )),
                widgetbox(
                    Div(text=
                        '<h2 align=center style="text-align:center;">  WSIGMA </h2>'
                        )),
                x_metric,
                w_metric,
                alert_x,
                alert_w,
                column(wedge_plot_x, sizing_mode='scale_both'),
                column(wedge_plot_w, sizing_mode='scale_both'),
                column(xhist, sizing_mode='scale_both'),
                column(whist, sizing_mode='scale_both'),
                column(p_hist_x, sizing_mode='scale_both'),
                column(p_hist_w, sizing_mode='scale_both'),
                column(xamp, sizing_mode='scale_both'),
                column(wamp, sizing_mode='scale_both'),
                css_classes=["display-grid"],
                sizing_mode='scale_width')
        else:
            reference_exposures = check_ccds['PARAMS']['XWSIGMA_REF']
            keynames = ["XSIGMA"]
            x_metric = Table().reference_table(keynames,
                                               [current_exposures[0]],
                                               [reference_exposures[0]])
            keynames = ["WSIGMA"]
            w_metric = Table().reference_table(keynames,
                                               [current_exposures[1]],
                                               [reference_exposures[1]])
            layout = column(
                info_col,
                widgetbox(Div(), css_classes=["tableranges"]),
                widgetbox(
                    Div(text=
                        '<h2 align=center style="text-align:center;">  XSIGMA </h2>'
                        )),
                widgetbox(
                    Div(text=
                        '<h2 align=center style="text-align:center;">  WSIGMA </h2>'
                        )),
                x_metric,
                w_metric,
                alert_x,
                alert_w,
                column(xhist, sizing_mode='scale_both'),
                column(whist, sizing_mode='scale_both'),
                column(p_hist_x, sizing_mode='scale_both'),
                column(p_hist_w, sizing_mode='scale_both'),
                column(xamp, sizing_mode='scale_both'),
                column(wamp, sizing_mode='scale_both'),
                css_classes=["display-grid"],
                sizing_mode='scale_width')

        return file_html(layout, CDN, "XWSIGMA")
コード例 #2
0
    def load_qa(self):
        cam = self.selected_arm + str(self.selected_spectrograph)

        mergedqa = QLFModels().get_output(self.selected_process_id, cam)

        # list of available object in petal
        objlist = mergedqa["TASKS"]["CHECK_SPECTRA"]["METRICS"]["OBJLIST"]
        if 'SKY' in objlist:
            objlist.remove('SKY')

        gen_info = mergedqa['GENERAL_INFO']

        ra = gen_info['RA']
        dec = gen_info['DEC']

        check_spectra = mergedqa['TASKS']['CHECK_SPECTRA']
        snr = check_spectra['METRICS']

        nrg = check_spectra['PARAMS']['FIDSNR_TGT_NORMAL_RANGE']
        wrg = check_spectra['PARAMS']['FIDSNR_TGT_WARN_RANGE']

        # Object identification in fibers:
        obj_fiber = sort_obj(gen_info)

        qlf_obj = ['ELG', 'LRG', 'QSO', 'STAR']
        avobj = ['STAR' if x == 'STD' else x for x in objlist]

        obj_idx = {}
        for o in qlf_obj:
            try:
                obj_idx.update({o: avobj.index(o)})
            except:
                obj_idx.update({o: None})

        try:
            exptime = gen_info['EXPTIME']
            name_warn = ''
        except:
            exptime = 1000
            name_warn = ' (exptime fixed)'

        # Sort objects for QLF:
        obj_idx = {}
        for o in qlf_obj:
            try:
                obj_idx.update({o: avobj.index(o)})
            except:
                obj_idx.update({o: None})

        def good_idx(mag, snr):
            # Filtering measurements with good SNR & good MAG
            # Treating None (inf and Nan already treated in db)
            mag_2 = np.array([-9998 if x is None else x for x in mag])
            snr_2 = np.array([-9998 if x is None else x for x in snr])
            idx = np.arange(len(snr_2))

            # Filtering values with good mag AND snr
            return list(idx[(mag_2 > -999) & (snr_2 > 0)])

        # Treating bad snr and mag
        mag_snr = {}
        for o in avobj:
            snr_ql, mag_ql = snr['SNR_MAG_TGT'][obj_idx[o]]
            idx = good_idx(mag_ql, snr_ql)
            x = [mag_ql[i] for i in idx]
            y = [snr_ql[i] for i in idx]

            mag_snr.update({o: [y, x]})

        # Preparing xy_plot data:
        if obj_idx['ELG'] is not None:
            elg_snr = mag_snr['ELG']
        if obj_idx['LRG'] is not None:
            lrg_snr = mag_snr['LRG']
        if obj_idx['QSO'] is not None:
            qso_snr = mag_snr['QSO']
        if obj_idx['STAR'] is not None:
            star_snr = mag_snr['STAR']

        #lrg_snr = mag_snr['LRG']

        def fit_func(xdata, coeff):
            """ astro fit 
            """
            r1 = 0.0  # read noise
            a, b = coeff

            x = np.linspace(min(xdata), max(xdata), 1000)
            Flux = 10**(-0.4 * (x - 22.5))
            y = a * Flux * exptime / np.sqrt(a * Flux * exptime + b * exptime +
                                             r1**2)
            return x, y

        data_model = {
            'x': [],
            'y': [],
            'y2': [],
            'fiber_id': [],
            'ra': [],
            'dec': [],
        }

        elg = ColumnDataSource(data=data_model.copy())
        lrg = ColumnDataSource(data=data_model.copy())
        qso = ColumnDataSource(data=data_model.copy())
        star = ColumnDataSource(data=data_model.copy())

        data_fit = {
            'x': [],
            'y': [],
            'y2': [],
            'fiber_id': [],
            'ra': [],
            'dec': []
        }

        elg_fit = ColumnDataSource(data=data_fit.copy())
        lrg_fit = ColumnDataSource(data=data_fit.copy())
        qso_fit = ColumnDataSource(data=data_fit.copy())
        star_fit = ColumnDataSource(data=data_fit.copy())

        if obj_idx['ELG'] is not None:
            elg.data['x'] = elg_snr[1]
            elg.data['y'] = np.array(elg_snr[0])
            elg.data['y2'] = np.array(elg_snr[0])**2
            elg.data['fiber_id'] = gen_info['ELG_FIBERID']
            elg.data['ra'] = [ra[i % 500] for i in gen_info['ELG_FIBERID']]
            elg.data['dec'] = [dec[i % 500] for i in gen_info['ELG_FIBERID']]

            xfit, yfit = fit_func(elg_snr[1],
                                  snr['FITCOEFF_TGT'][obj_idx['ELG']])
            elg_fit.data['x'] = xfit
            elg_fit.data['y'] = np.array(yfit)
            elg_fit.data['y2'] = np.array(yfit)**2

            for key in ['fiber_id', 'ra', 'dec']:
                elg_fit.data[key] = [''] * len(yfit)

        if obj_idx['LRG'] is not None:
            lrg.data['x'] = lrg_snr[1]
            lrg.data['y'] = np.array(lrg_snr[0])
            lrg.data['y2'] = np.array(lrg_snr[0])**2
            lrg.data['fiber_id'] = gen_info['LRG_FIBERID']
            lrg.data['ra'] = [ra[i % 500] for i in gen_info['LRG_FIBERID']]
            lrg.data['dec'] = [dec[i % 500] for i in gen_info['LRG_FIBERID']]

            xfit, yfit = fit_func(lrg_snr[1],
                                  snr['FITCOEFF_TGT'][obj_idx['LRG']])
            lrg_fit.data['x'] = xfit
            lrg_fit.data['y'] = np.array(yfit)
            lrg_fit.data['y2'] = np.array(yfit)**2
            for key in ['fiber_id', 'ra', 'dec']:
                lrg_fit.data[key] = [''] * len(yfit)

        if obj_idx['QSO'] is not None:
            qso.data['x'] = qso_snr[1]
            qso.data['y'] = np.array(qso_snr[0])
            qso.data['y2'] = np.array(qso_snr[0])**2
            qso.data['fiber_id'] = gen_info['QSO_FIBERID']
            qso.data['ra'] = [ra[i % 500] for i in gen_info['QSO_FIBERID']]
            qso.data['dec'] = [dec[i % 500] for i in gen_info['QSO_FIBERID']]

            xfit, yfit = fit_func(qso_snr[1],
                                  snr['FITCOEFF_TGT'][obj_idx['QSO']])
            qso_fit.data['x'] = xfit
            qso_fit.data['y'] = np.array(yfit)
            qso_fit.data['y2'] = np.array(yfit)**2
            for key in ['fiber_id', 'ra', 'dec']:
                qso_fit.data[key] = [''] * len(yfit)

        if obj_idx['STAR'] is not None:
            star.data['x'] = star_snr[1]
            star.data['y'] = np.array(star_snr[0])
            star.data['y2'] = np.array(star_snr[0])**2
            star.data['fiber_id'] = gen_info['STAR_FIBERID']
            star.data['ra'] = [ra[i % 500] for i in gen_info['STAR_FIBERID']]
            star.data['dec'] = [dec[i % 500] for i in gen_info['STAR_FIBERID']]

            xfit, yfit = fit_func(star_snr[1],
                                  snr['FITCOEFF_TGT'][obj_idx['STAR']])
            star_fit.data['x'] = xfit
            star_fit.data['y'] = np.array(yfit)
            star_fit.data['y2'] = np.array(yfit)**2
            for key in ['fiber_id', 'ra', 'dec']:
                star_fit.data[key] = [''] * len(yfit)

        html_tooltip = """
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">SNR: </span>
                    <span style="font-size: 1vw; color: #515151;">@y</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">DECAM_{}: </span>
                    <span style="font-size: 1vw; color: #515151;">@x</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Fiber ID: </span>
                    <span style="font-size: 1vw; color: #515151;">@fiber_id</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">RA: </span>
                    <span style="font-size: 1vw; color: #515151;">@ra</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Dec: </span>
                    <span style="font-size: 1vw; color: #515151">@dec</span>
                </div>
            </div>
        """.format(str(self.selected_arm).upper())

        url = "http://legacysurvey.org/viewer?ra=@ra&dec=@dec&zoom=16&layer=decals-dr5"

        elg_plot = Plot2d(
            x_label="DECAM_{}".format(str(self.selected_arm).upper()),
            y_label="MEDIAN SNR^2",
            tooltip=html_tooltip,
            title="ELG",
            width=500,
            height=380,
            yscale="log",
        ).line(
            source=elg_fit,
            y='y2',
        ).circle(
            source=elg,
            size=8,
            y='y2',
            fill_color="blue",
        ).plot

        taptool = elg_plot.select(type=TapTool)
        taptool.callback = OpenURL(url=url)

        lrg_plot = Plot2d(x_label="DECAM_{}".format(
            str(self.selected_arm).upper()),
                          y_label="MEDIAN SNR^2",
                          tooltip=html_tooltip,
                          title="LRG",
                          width=500,
                          height=380,
                          yscale="log").line(
                              source=lrg_fit,
                              y='y2',
                          ).circle(
                              source=lrg,
                              size=8,
                              y='y2',
                              fill_color="red",
                          ).plot

        taptool = lrg_plot.select(type=TapTool)
        taptool.callback = OpenURL(url=url)

        qso_plot = Plot2d(x_label="DECAM_{}".format(
            str(self.selected_arm).upper()),
                          y_label="MEDIAN SNR^2",
                          tooltip=html_tooltip,
                          title="QSO",
                          width=500,
                          height=380,
                          yscale="log").line(
                              source=qso_fit,
                              y='y2',
                          ).circle(
                              source=qso,
                              size=8,
                              y='y2',
                              fill_color="green",
                          ).plot

        taptool = qso_plot.select(type=TapTool)
        taptool.callback = OpenURL(url=url)

        star_plot = Plot2d(
            x_label="DECAM_{}".format(str(self.selected_arm).upper()),
            y_label="MEDIAN SNR^2",
            tooltip=html_tooltip,
            title="STAR",
            width=500,
            height=380,
            yscale="log",
        ).line(source=star_fit, y='y2').circle(
            source=star,
            size=8,
            y='y2',
            fill_color="yellow",
        ).plot

        taptool = star_plot.select(type=TapTool)
        taptool.callback = OpenURL(url=url)

        # infos
        info_col = Title().write_description('snr')

        # -----------------
        #       WEDGES

        snr_tooltip = """
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Resid: </span>
                    <span style="font-size: 1vw; color: #515151">@resid_snr</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Obj Type: </span>
                    <span style="font-size: 1vw; color: #515151;">@OBJ_TYPE</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">RA: </span>
                    <span style="font-size: 1vw; color: #515151;">@x1</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">DEC: </span>
                    <span style="font-size: 1vw; color: #515151;">@y1</span>
                </div>

                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">FIBER ID: </span>
                    <span style="font-size: 1vw; color: #515151;">@QLF_FIBERID</span>
                </div>

            </div>
        """

        median = snr['MEDIAN_SNR']
        resid = snr['SNR_RESID']

        qlf_fiberid = range(0, 500)
        my_palette = get_palette('bwr')

        fibersnr_tgt = []
        for i in avobj:
            fibersnr_tgt.append(gen_info[i + '_FIBERID'])

        fibersnr = []
        for i in list(range(len(fibersnr_tgt))):
            fibersnr = fibersnr + fibersnr_tgt[i]

        source = ColumnDataSource(
            data={
                'x1': [ra[i % 500] for i in fibersnr],
                'y1': [dec[i % 500] for i in fibersnr],
                'resid_snr': resid,
                'QLF_FIBERID': fibersnr,
                'OBJ_TYPE': [obj_fiber[i % 500] for i in fibersnr],
                'median': median
            })

        ra_not = []
        dec_not = []
        obj_not = []
        fiber_not = []
        fiber_mod = []
        for fiber in fibersnr:
            fiber_mod.append(fiber % 500)

        for i in range(500):
            if i not in fiber_mod:
                ra_not.append(ra[i])
                dec_not.append(dec[i])
                fiber_not.append(i)
                obj_not.append(obj_fiber[i])

        source_not = ColumnDataSource(
            data={
                'x1': ra_not,
                'y1': dec_not,
                'resid_snr': [''] * len(dec_not),
                'QLF_FIBERID': fiber_not,
                'OBJ_TYPE': obj_not
            })

        rmax, rmin = np.nanmax(resid), np.nanmin(resid)

        if np.isnan(rmax) or np.isnan(rmin):
            fill_color = 'lightgray'
        else:
            dy = (rmax - rmin) * 0.1
            mapper = LinearColorMapper(palette=my_palette,
                                       nan_color='darkgray',
                                       low=rmin - dy,
                                       high=rmax + dy)
            fill_color = {'field': 'resid_snr', 'transform': mapper}

        radius = 0.0165
        radius_hover = 0.02
        # centralize wedges in plots:
        ra_center = 0.5 * (max(ra) + min(ra))
        dec_center = 0.5 * (max(dec) + min(dec))
        xrange_wedge = Range1d(start=ra_center + .95, end=ra_center - .95)
        yrange_wedge = Range1d(start=dec_center + .82, end=dec_center - .82)

        # axes limit
        xmin, xmax = [min(ra[:]), max(ra[:])]
        ymin, ymax = [min(dec[:]), max(dec[:])]
        xfac, yfac = [(xmax - xmin) * 0.06, (ymax - ymin) * 0.06]
        left, right = xmin - xfac, xmax + xfac
        bottom, top = ymin - yfac, ymax + yfac

        # WEDGE RESIDUAL plots
        wedge_plot = Plot2d(x_range=xrange_wedge,
                            y_range=yrange_wedge,
                            x_label="RA",
                            y_label="DEC",
                            tooltip=snr_tooltip,
                            title='Residual SNR' + name_warn,
                            width=500,
                            height=380,
                            yscale="auto").wedge(
                                source,
                                x='x1',
                                y='y1',
                                field='resid_snr',
                                mapper=mapper,
                            ).wedge(
                                source_not,
                                x='x1',
                                y='y1',
                            ).plot

        taptool = wedge_plot.select(type=TapTool)
        taptool.callback = OpenURL(url=url)

        # -------------------
        #   Median plot

        median_tooltip = """
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">MEDIAN: </span>
                    <span style="font-size: 1vw; color: #515151">@median</span>
                </div>
       <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Resid: </span>
                    <span style="font-size: 1vw; color: #515151">@resid_snr</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Obj Type: </span>
                    <span style="font-size: 1vw; color: #515151;">@OBJ_TYPE</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">RA: </span>
                    <span style="font-size: 1vw; color: #515151;">@x1</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">DEC: </span>
                    <span style="font-size: 1vw; color: #515151;">@y1</span>
                </div>

                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">FIBER ID: </span>
                    <span style="font-size: 1vw; color: #515151;">@QLF_FIBERID</span>
                </div>

            </div>
        """

        mediam_plot = Plot2d(
            x_label="Fiber",
            y_label='Median SNR',
            tooltip=median_tooltip,
            title="",
            width=600,
            height=400,
            yscale="auto",
            hover_mode="vline",
        ).vbar(
            source,
            y="median",
            x="QLF_FIBERID",
            line_width=0.4,
        )

        # Prepare tables
        current_exposures = check_spectra['METRICS']['FIDSNR_TGT']
        program = gen_info['PROGRAM'].upper()
        reference_exposures = check_spectra['PARAMS']['FIDSNR_TGT_' + program +
                                                      '_REF']
        keynames = ["FIDSNR_TGT" + " ({})".format(i) for i in objlist]
        metric = Table().reference_table(keynames, current_exposures,
                                         reference_exposures)
        alert = Table().alert_table(nrg, wrg)

        layout = column(info_col,
                        Div(),
                        metric,
                        alert,
                        column(elg_plot, sizing_mode='scale_both'),
                        column(lrg_plot, sizing_mode='scale_both'),
                        column(qso_plot, sizing_mode='scale_both'),
                        column(star_plot, sizing_mode='scale_both'),
                        column(mediam_plot, sizing_mode='scale_both'),
                        column(wedge_plot, sizing_mode='scale_both'),
                        css_classes=["display-grid"])
        return file_html(layout, CDN, "MEDIAN SNR")
コード例 #3
0
    def load_qa(self):
        cam = self.selected_arm+str(self.selected_spectrograph)
        mergedqa = QLFModels().get_output(self.selected_process_id, cam)
        check_spectra = mergedqa['TASKS']['CHECK_SPECTRA']

        gen_info = mergedqa['GENERAL_INFO']
        ra = gen_info['RA']
        dec = gen_info['DEC']

        nrg = check_spectra['PARAMS']['PEAKCOUNT_NORMAL_RANGE']
        wrg = check_spectra['PARAMS']['PEAKCOUNT_WARN_RANGE']
        current_exposures = [check_spectra['METRICS']['PEAKCOUNT']]
        program = gen_info['PROGRAM'].upper()
        reference_exposures = check_spectra['PARAMS']['PEAKCOUNT_' +
                                                      program + '_REF']

        obj_type = sort_obj(gen_info)

        my_palette = get_palette("RdYlBu_r")

        peak_tooltip = """
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">PEAKCOUNT: </span>
                    <span style="font-size: 1vw; color: #515151">@peakcount_fib</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">RA: </span>
                    <span style="font-size: 1vw; color: #515151;">@x1</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">DEC: </span>
                    <span style="font-size: 1vw; color: #515151;">@y1</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Obj Type: </span>
                    <span style="font-size: 1vw; color: #515151;">@OBJ_TYPE</span>
                </div>
            </div>
        """
        url = "http://legacysurvey.org/viewer?ra=@ra&dec=@dec&zoom=16&layer=decals-dr5"

        qlf_fiberid = np.arange(0, 500)

        peak_hover = HoverTool(tooltips=peak_tooltip)

        peakcount_fib = check_spectra['METRICS']['PEAKCOUNT_FIB']

        source = ColumnDataSource(data={
            'x1': ra, 
            'y1': dec,
            'peakcount_fib': peakcount_fib,
            'delta_peakcount_fib': np.array(peakcount_fib)-reference_exposures,
            'QLF_FIBERID': qlf_fiberid,
            'OBJ_TYPE': obj_type,

        })
        low, high = wrg
        mapper = LinearColorMapper(palette=my_palette,
                                   low=low, #0.98*np.min(peakcount_fib),
                                   high=high, #1.02*np.max(peakcount_fib))
                                   nan_color='darkgrey') 
        radius = 0.0165  
        radius_hover = 0.02

        # centralize wedges in plots:
        ra_center=0.5*(max(ra)+min(ra))
        dec_center=0.5*(max(dec)+min(dec))
        xrange_wedge = Range1d(start=ra_center + .95, end=ra_center-.95)
        yrange_wedge = Range1d(start=dec_center+.82, end=dec_center-.82)

        # axes limit
        xmin, xmax = [min(gen_info['RA'][:]), max(gen_info['RA'][:])]
        ymin, ymax = [min(gen_info['DEC'][:]), max(gen_info['DEC'][:])]
        xfac, yfac = [(xmax-xmin)*0.06, (ymax-ymin)*0.06]
        left, right = xmin - xfac, xmax+xfac
        bottom, top = ymin-yfac, ymax+yfac

        wedge_plot = Plot2d(
            x_range=xrange_wedge,
            y_range=yrange_wedge,
            x_label="RA",
            y_label="DEC",
            tooltip=peak_tooltip,
            title="PEAKCOUNT",
            width=500,
            height=380,
        ).wedge(
            source,
            x='x1',
            y='y1',
            field='delta_peakcount_fib',
            mapper=mapper,
        ).plot

        info_col = Title().write_description('skypeak')

        # ================================
        # histogram
        hist_tooltip = """
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Frequency: </span>
                    <span style="font-size: 1vw; color: #515151">@hist</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">Peakcount: </span>
                    <span style="font-size: 1vw; color: #515151;">[@left, @right]</span>
                </div>
            </div>
        """

        hist, edges = np.histogram(peakcount_fib, bins="sqrt")

        source_hist = ColumnDataSource(data={
            'hist': hist,
            'histplusone': hist+1,
            'bottom': [0] * len(hist),
            'bottomplusone': [1]*len(hist),
            'left': edges[:-1],
            'right': edges[1:]
        })


        p_hist = Plot2d(
            y_range=(1, 11**(int(np.log10(max(hist)))+1)),
            x_label='PEAKCOUNT',
            y_label='Frequency + 1',
            tooltip=hist_tooltip,
            title="",
            width=550,
            height=300,
            yscale="log",
            hover_mode="vline",
        ).quad(
            source_hist,
            top='histplusone',
            bottom='bottomplusone',
            line_width=1,
        )


       # Prepare tables
        keynames = ["PEAKCOUNT" for i in range(len(current_exposures))]
        metric = Table().reference_table(keynames, current_exposures, reference_exposures)
        alert = Table().alert_table(nrg, wrg)

        layout = column(info_col, Div(),
                        metric, alert,
                        column(wedge_plot, sizing_mode='scale_both'),
                        column(p_hist, sizing_mode='scale_both'),
                        css_classes=["display-grid"])

        return file_html(layout, CDN, "SKYPEAK")
コード例 #4
0
ファイル: main.py プロジェクト: jorgemachucav/qlf
    def load_qa(self):
        cam = self.selected_arm + str(self.selected_spectrograph)

        mergedqa = QLFModels().get_output(self.selected_process_id, cam)
        check_fibers = mergedqa['TASKS']['CHECK_FIBERS']
        gen_info = mergedqa['GENERAL_INFO']
        flavor = mergedqa["FLAVOR"]

        countbins = check_fibers['METRICS']
        nrg = check_fibers['PARAMS']['NGOODFIB_NORMAL_RANGE']
        wrg = check_fibers['PARAMS']['NGOODFIB_WARN_RANGE']

        if flavor == "science":
            ra = gen_info['RA']
            dec = gen_info['DEC']
        else:
            ra = [''] * 500
            dec = [''] * 500

        qlf_fiberid = np.arange(0, 500)  # the fiber id is giving by petal

        obj_type = sort_obj(mergedqa['GENERAL_INFO'])

        hist_tooltip = """ 
            <div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">FIBER STATUS: </span>
                    <span style="font-size: 1vw; color: #515151;">@status</span>
                </div>
                <div>
                    <span style="font-size: 1vw; font-weight: bold; color: #303030;">FIBER ID: </span>
                    <span style="font-size: 1vw; color: #515151;">@fiberid</span>
                </div>
            </div>
                """
        y = np.array(countbins['GOOD_FIBERS'])
        fibers = list(countbins['GOOD_FIBERS'])
        colors = ['#319b5c' if i == 1 else '#282828' for i in fibers]
        x = np.array(range(len(fibers)))
        hist_source = ColumnDataSource(
            data={
                'goodfiber': y,
                'fiberid': x,
                'segx0': x - 0.4,
                'segx1': x + 0.4,
                'segy0': y,
                'segy1': y,
                'status': ['GOOD' if i == 1 else 'BAD' for i in y],
                'x1': ra,
                'y1': dec,
                'QLF_FIBERID': qlf_fiberid,
                'OBJ_TYPE': obj_type,
                'color': colors
            })

        p = Plot2d(
            y_range=Range1d(-.1, 1.1),
            x_label="Fiber",
            y_label="Fiber Status",
            tooltip=hist_tooltip,
            title="Status",
            width=550,
            height=350,
            yscale="auto",
            hover_mode="vline",
        ).segment(hist_source).plot

        # ----------------
        # Wedge

        if flavor == "science":

            if ra is None or dec is None:
                return 'Missing RA and DEC'

            count_tooltip = """
                <div>
                    <div>
                        <span style="font-size: 1vw; font-weight: bold; color: #303030;">FIBER STATUS: </span>
                        <span style="font-size: 1vw; color: #515151">@status</span>
                    </div>
                    <div>
                        <span style="font-size: 1vw; font-weight: bold; color: #303030;">RA: </span>
                        <span style="font-size: 1vw; color: #515151;">@x1</span>
                    </div>
                    <div>
                        <span style="font-size: 1vw; font-weight: bold; color: #303030;">DEC: </span>
                        <span style="font-size: 1vw; color: #515151;">@y1</span>
                    </div>
                    <div>
                        <span style="font-size: 1vw; font-weight: bold; color: #303030;">Obj Type: </span>
                        <span style="font-size: 1vw; color: #515151;">@OBJ_TYPE</span>
                    </div>
                </div>
            """

            radius = 0.0165
            radius_hover = 0.02
            # centralize wedges in plots:
            ra_center = 0.5 * (max(ra) + min(ra))
            dec_center = 0.5 * (max(dec) + min(dec))
            xrange_wedge = Range1d(start=ra_center + .95, end=ra_center - .95)
            yrange_wedge = Range1d(start=dec_center + .82,
                                   end=dec_center - .82)

            p2 = Plot2d(x_range=xrange_wedge,
                        y_range=yrange_wedge,
                        x_label="RA",
                        y_label="DEC",
                        tooltip=count_tooltip,
                        title="Fiber Status",
                        width=400,
                        height=350,
                        yscale="auto").wedge(
                            hist_source,
                            x='x1',
                            y='y1',
                            field='color',
                        ).plot
        else:
            p2 = Div()

        ngood = countbins['NGOODFIB']
        fracgood = ngood / 500. - 1.

        info_col = Title().write_description('countbins')

        # Prepare tables
        current_exposures = [check_fibers['METRICS']['NGOODFIB']]
        if flavor == 'science':
            program = gen_info['PROGRAM'].upper()
            reference_exposures = check_fibers['PARAMS']['NGOODFIB_' +
                                                         program + '_REF']
        else:
            reference_exposures = check_fibers['PARAMS']['NGOODFIB_REF']
        keynames = ["NGOODFIB"]
        metric = Table().reference_table(keynames, current_exposures,
                                         reference_exposures)
        alert = Table().alert_table(nrg, wrg)

        layout = column(info_col,
                        Div(),
                        metric,
                        alert,
                        column(p, sizing_mode='scale_both'),
                        column(p2, sizing_mode='scale_both'),
                        css_classes=["display-grid"])

        return file_html(layout, CDN, "COUNTBINS")