コード例 #1
0
 def _IsAlertRecovered(self, alert_entity):
     test = alert_entity.GetTestMetadataKey().get()
     if not test:
         logging.error(
             'TestMetadata %s not found for Anomaly %s, deleting test.',
             utils.TestPath(alert_entity.GetTestMetadataKey()),
             alert_entity)
         return False
     config = anomaly_config.GetAnomalyConfigDict(test)
     max_num_rows = config.get('max_window_size',
                               find_anomalies.DEFAULT_NUM_POINTS)
     rows = [
         r for r in find_anomalies.GetRowsToAnalyze(test, max_num_rows)
         if r.revision > alert_entity.end_revision
     ]
     change_points = find_anomalies.FindChangePointsForTest(rows, config)
     delta_anomaly = (alert_entity.median_after_anomaly -
                      alert_entity.median_before_anomaly)
     for change in change_points:
         delta_change = change.median_after - change.median_before
         if (self._IsOppositeDirection(delta_anomaly, delta_change) and
                 self._IsApproximatelyEqual(delta_anomaly, -delta_change)):
             logging.debug(
                 'Anomaly %s recovered; recovery change point %s.',
                 alert_entity.key, change.AsDict())
             return True
     return False
コード例 #2
0
def _IsAnomalyRecovered(anomaly_entity):
    """Checks whether an Anomaly has recovered.

  An Anomaly will be considered "recovered" if there's a change point in
  the series after the Anomaly with roughly equal magnitude and opposite
  direction.

  Args:
    anomaly_entity: The original regression Anomaly.

  Returns:
    True if the Anomaly should be marked as recovered, False otherwise.
  """
    test = anomaly_entity.test.get()
    config = anomaly_config.GetAnomalyConfigDict(test)
    max_num_rows = config.get('max_window_size',
                              find_anomalies.DEFAULT_NUM_POINTS)
    rows = [
        r for r in find_anomalies.GetRowsToAnalyze(test, max_num_rows)
        if r.revision > anomaly_entity.end_revision
    ]
    change_points = find_anomalies.FindChangePointsForTest(rows, config)
    delta_anomaly = (anomaly_entity.median_after_anomaly -
                     anomaly_entity.median_before_anomaly)
    for change in change_points:
        delta_change = change.median_after - change.median_before
        if (_IsOppositeDirection(delta_anomaly, delta_change)
                and _IsApproximatelyEqual(delta_anomaly, -delta_change)):
            logging.debug('Anomaly %s recovered; recovery change point %s.',
                          anomaly_entity.key, change.AsDict())
            return True
    return False