コード例 #1
0
def test_rotate_no_output_shape_or_chunks_specified():

    image = da.ones((3, 3))
    image_t = da_ndinterp.rotate(image, 0)

    assert image_t.shape == image.shape
    assert image_t.chunks == tuple([(s, ) for s in image.shape])
コード例 #2
0
def test_rotate_type_consistency():

    image = da.ones((3, 3))
    image_t = da_ndinterp.rotate(image, 0)

    assert isinstance(image, type(image_t))
    assert isinstance(image[0, 0].compute(), type(image_t[0, 0].compute()))
コード例 #3
0
def test_rotate_numpy_input():

    image = np.ones((3, 3))
    image_t = da_ndinterp.rotate(image, 0, reshape=False)

    assert image_t.shape == image.shape
    assert (da.from_array(image) == image_t).min()
コード例 #4
0
def test_rotate_type_consistency_gpu():

    cupy = pytest.importorskip("cupy", minversion="6.0.0")

    image = da.ones((3, 3))
    image_t = da_ndinterp.rotate(image, 0)

    image.map_blocks(cupy.asarray)

    assert isinstance(image, type(image_t))
    assert isinstance(image[0, 0].compute(), type(image_t[0, 0].compute()))
コード例 #5
0
def test_rotate_large_input_small_output_cpu():
    """
    Make sure input array does not need to be computed entirely
    """

    # fully computed, this array would occupy 8TB
    image = da.random.random([10000] * 3, chunks=(200, 200, 200))
    image_t = da_ndinterp.rotate(image,
                                 0,
                                 output_shape=[1, 1, 1],
                                 output_chunks=[1, 1, 1])

    # if more than the needed chunks should be computed,
    # this would take long and eventually raise a MemoryError
    image_t[0, 0, 0].compute()
コード例 #6
0
def test_rotate_large_input_small_output_gpu():
    """
    Make sure input array does not need to be computed entirely
    """
    cupy = pytest.importorskip("cupy", minversion="6.0.0")

    # this array would occupy more than 24GB on a GPU
    image = da.random.random([2000] * 3, chunks=(50, 50, 50))
    image.map_blocks(cupy.asarray)

    image_t = da_ndinterp.rotate(image,
                                 0,
                                 output_shape=[1, 1, 1],
                                 output_chunks=[1, 1, 1])

    # if more than the needed chunks should be computed,
    # this would take long and eventually raise a MemoryError
    image_t[0, 0, 0].compute()
コード例 #7
0
def test_rotate_prefilter_warning():

    with pytest.warns(UserWarning):
        da_ndinterp.rotate(da.ones((3, 3)), 0, order=3, prefilter=True)
コード例 #8
0
def test_rotate_minimal_input():

    image = np.ones((3, 3))
    image_t = da_ndinterp.rotate(np.ones((3, 3)), 0)

    assert image_t.shape == image.shape
コード例 #9
0
def validate_rotate(
        n=2,
        axes=(0, 1),
        reshape=False,
        input_output_shape_per_dim=(16, 16),
        interp_order=1,
        interp_mode='constant',
        input_output_chunksize_per_dim=(6, 6),
        random_seed=0,
        use_cupy=False,
):
    """
    Compare the outputs of `ndimage.rotate`
    and `dask_image.ndinterp.rotate`.

    Notes
    -----
        Currently, prefilter is disabled and therefore the output
        of `dask_image.ndinterp.rotateation` is compared
        to `prefilter=False`.
    """

    # define test image
    a = input_output_shape_per_dim[0]

    np.random.seed(random_seed)
    image = np.random.random([a] * n)

    angle = np.random.random() * 360 - 180

    # transform into dask array
    chunksize = [input_output_chunksize_per_dim[0]] * n
    image_da = da.from_array(image, chunks=chunksize)
    if use_cupy:
        import cupy as cp
        image_da = image_da.map_blocks(cp.asarray)

    # define resampling options
    output_chunks = [input_output_chunksize_per_dim[1]] * n

    # transform with scipy
    image_t_scipy = ndimage.rotate(image,
                                   angle,
                                   axes=axes,
                                   reshape=reshape,
                                   order=interp_order,
                                   mode=interp_mode,
                                   prefilter=False)

    # transform with dask-image
    image_t_dask = da_ndinterp.rotate(
        image,
        angle,
        axes=axes,
        reshape=reshape,
        order=interp_order,
        mode=interp_mode,
        prefilter=False,
        # output_chunks = output_chunks
    )
    image_t_dask_computed = image_t_dask.compute()

    assert np.allclose(image_t_scipy, image_t_dask_computed)