}, # HTCondor submit script job_extra={ "universe": "docker", # To be used with coffea-casa:0.1.11 "encrypt_input_files": "/etc/cmsaf-secrets/xcache_token", #"docker_network_type": "host", "docker_image": "coffeateam/coffea-casa-analysis:0.1.11", "container_service_names": "dask", "dask_container_port": "8787", "should_transfer_files": "YES", "when_to_transfer_output": "ON_EXIT", "+DaskSchedulerAddress": '"129.93.183.33:8787"', }) cluster.adapt(minimum_jobs=5, maximum_jobs=100, maximum_memory="4 GB" ) # auto-scale between 5 and 100 jobs (maximum_memory="4 GB") client = Client(cluster) exe_args = { 'client': client, } output = processor.run_uproot_job(fileset, treename='Events', processor_instance=METProcessor(), executor=processor.dask_executor, executor_args=exe_args) # Generates a 1D histogram from the data output to the 'MET' key. fill_opts are optional, to fill the graph (default is a line). hist.plot1d(output['MET'],
from tdub import setup_logging from tdub.train import prepare_from_root from tdub.utils import get_selection, get_features, quick_files import lightgbm as lgbm from sklearn.model_selection import train_test_split from dask_jobqueue import HTCondorCluster from dask.distributed import Client from dask_ml.model_selection import GridSearchCV cluster = HTCondorCluster(cores=2, disk="4GB", memory="8GB") client = Client(cluster) cluster.adapt(maximum_jobs=200) setup_logging() qf = quick_files("/atlasgpfs01/usatlas/data/ddavis/wtloop/v29_20191111") df, y, w = prepare_from_root(qf["tW_DR"], qf["ttbar"], "1j1b") X_train, X_test, y_train, y_test, w_train, w_test = train_test_split( df, y, w, train_size=0.8, random_state=414, shuffle=True) n_sig = y_train[y_train == 1].shape[0] n_bkg = y_train[y_train == 0].shape[0] spw = n_bkg / n_sig n_sig = y[y == 1].shape[0] n_bkg = y[y == 0].shape[0] spw = n_bkg / n_sig