コード例 #1
0
    def test_basic(self):
        a = dpp.StandardScaler()
        b = spp.StandardScaler()

        a.fit(X)
        b.fit(X.compute())
        assert_estimator_equal(a, b)
コード例 #2
0
ファイル: test_data.py プロジェクト: stjordanis/dask-ml
    def test_basic(self):
        a = dpp.StandardScaler()
        b = spp.StandardScaler()

        a.fit(X)
        b.fit(X.compute())
        assert_estimator_equal(a, b, exclude="n_samples_seen_")
コード例 #3
0
ファイル: test_data.py プロジェクト: hristog/dask-ml
 def test_nan(self, pandas_df):
     pandas_df = pandas_df.copy()
     pandas_df.iloc[0] = np.nan
     dask_nan_df = dd.from_pandas(pandas_df, npartitions=5)
     a = dpp.StandardScaler()
     a.fit(dask_nan_df.values)
     assert np.isnan(a.mean_).sum() == 0
     assert np.isnan(a.var_).sum() == 0
コード例 #4
0
ファイル: test_data.py プロジェクト: stjordanis/dask-ml
    def test_input_types(self, dask_df, pandas_df):
        a = dpp.StandardScaler()
        b = spp.StandardScaler()

        assert_estimator_equal(a.fit(dask_df.values),
                               a.fit(dask_df),
                               exclude="n_samples_seen_")

        assert_estimator_equal(a.fit(dask_df),
                               b.fit(pandas_df),
                               exclude="n_samples_seen_")

        assert_estimator_equal(a.fit(dask_df.values),
                               b.fit(pandas_df),
                               exclude="n_samples_seen_")

        assert_estimator_equal(a.fit(dask_df),
                               b.fit(pandas_df.values),
                               exclude="n_samples_seen_")

        assert_estimator_equal(a.fit(dask_df.values),
                               b.fit(pandas_df.values),
                               exclude="n_samples_seen_")
コード例 #5
0
 def test_inverse_transform(self):
     a = dpp.StandardScaler()
     assert_eq_ar(
         a.inverse_transform(a.fit_transform(X)).compute(), X.compute())
コード例 #6
0
ファイル: test_data.py プロジェクト: stjordanis/dask-ml
 def test_inverse_transform(self):
     a = dpp.StandardScaler()
     result = a.inverse_transform(a.fit_transform(X))
     assert dask.is_dask_collection(result)
     assert_eq_ar(result, X)