コード例 #1
0
def computeMemorySize(_training, _model, _resultFolder, _discretization):
    csv = CSV(_training)
    lAtt = len(csv.findAttributes(0)) - 1

    codeFile = "example_rf_sweet_spot.cpp"
    CodeGenerator().export(_training, _model, codeFile, _discretization)

    mem = []
    platforms = [Arduino(), MSP430(), ESP32()]
    for platform in platforms:
        mem.append(platform.run(codeFile, "unsigned char", lAtt))

    return mem
コード例 #2
0
def computeMemorySize(_training, _model, _regression):
    csv = CSV(_training)
    lAtt = len(csv.findAttributes(0)) - 1

    codeFile = "example_rf_sweet_spot.cpp"
    CodeGenerator().export(_training, _model, codeFile)

    if _regression == True:
        resultType = "float"
    else:
        resultType = "const char*"

    mem = []
    platforms = [Arduino(), MSP430(), ESP32()]
    for platform in platforms:
        mem.append(platform.run(codeFile, resultType, lAtt))

    return mem
コード例 #3
0
def regressionRF(_training, _trees, _depth, _file, _resultFolder,
                 _discretization):
    csv = CSV(training)
    attributes = csv.findAttributes(0)

    R = ResultMatrix()
    for numTrees in range(1, _trees + 1):
        for depth in range(1, _depth + 1):
            rf = RandomForest()
            rf.config.trees = numTrees
            rf.config.depth = depth

            # perform a cross validation to generate the training/test files
            e = Experiment(_training,
                           "example_rf_sweet_spot_disc",
                           verbose=False)
            e.regression([rf], 10)

            #
            r, c = CodeEvaluator().crossValidation(rf, _training, attributes,
                                                   e.tmp(), _discretization)
            result = np.hstack([r.data.mean(0), r.data.std(0)])
            header = r.header + [x + "_std" for x in r.header]

            mem = computeMemorySize(_training, rf, _resultFolder,
                                    _discretization)
            header += ["arduino", "msp", "esp"]
            result = np.hstack([result, mem])

            print([
                "#trees=" + str(numTrees) + "/" + str(_trees) + " depth=" +
                str(depth) + "/" + str(_depth) + ' mem=', mem
            ],
                  flush=True)

            R.add(header, result)
    R.save(_file)
コード例 #4
0
	def export(self, _training, _model, _out, _discretize=False):
		FileHandler().createFolder("tmp")
		tmpId = "_" + str(uuid.uuid1())
		tmpFolder = "tmp/"
		tmpTraining = "train" + tmpId + ".arff"

		csv = CSV(_training)
		csv.convertToARFF(tmpFolder + tmpTraining, False)		
		d = None
		if _discretize:
			d = csv.discretizeData()

		attributes = csv.findAttributes(0)


		weka = WEKA()
		weka.folder = tmpFolder
		weka.train(_model, tmpFolder + tmpTraining, tmpId)
		data = "\n".join(FileHandler().read(tmpFolder + "raw" + tmpId + ".txt"))

		FileHandler().checkFolder(_out)
		weka.modelInterface.exportCode(data, csv, attributes, _out, _training, discretization=d)

		FileHandler().deleteFiles([tmpFolder + tmpTraining, tmpFolder + "raw" + tmpId + ".txt"])
コード例 #5
0
ファイル: ModelRecommender.py プロジェクト: falkenber9/LIMITS
	def run(self, _training, _models, _platforms):
		R = ResultMatrix()
		M = [];
		for model in _models:
			# run the cross validation to compute the model performance
			M.append(model.toString())
			e = Experiment(_training)
			header, result = e.regression([model], 10)
			R.add(header, result)

			# train with the global training data and export code
			training_arff = "tmp/recommend.arff"

			csv = CSV()
			csv.load(_training)
			csv.convertToARFF(training_arff, False)
			attributes = csv.findAttributes(0)
			lAtt = len(attributes)-1
			WEKA().train(model, training_arff, "0")
			
			data = "\n".join(FileHandler().read("tmp/raw0.txt"))
			codeFile = "recommend.c"

			model.exportCode(data, csv, attributes, codeFile)

			# complile platform-specific code
			for platform in _platforms:
				""





				#print(model.toString() + " : " + platform.toString())
		print(R.header, R.data)
		print(M)
コード例 #6
0
ファイル: ANN_Model.py プロジェクト: falkenber9/LIMITS
    def generateCode(self, _file):
        csv = CSV(self.training)
        attributes = csv.findAttributes(0)
        normed = self.normalize(csv, attributes)
        resultType = "float"

        code = "#include <math.h>\n"
        if self.modelType == Type.CLASSIFICATION:
            code += ""
            classes = attributes[0].type.strip("{").strip("}").split(",")
            classes = ["\"" + key + "\"" for key in classes]

            code += CodeGenerator().generateArray("const char*", "classes",
                                                  classes) + "\n\n"
            resultType = "const char*"
        else:
            code += "\n"

        # weight matrices
        if not self.useUnrolling:
            for i in range(0, len(self.layers)):
                W = self.layers[i][0]
                name = "w" + str(i)
                if i == len(self.layers) - 1:
                    name = "w_out"

                code += "const " + CodeGenerator().generateMatrix(
                    "float", name, W) + "\n"
            code += "\n"

        # threshold vectors
        for i in range(0, len(self.layers)):
            matrix = self.layers[i]
            T = self.layers[i][1]
            name = "th" + str(i)
            if i == len(self.layers) - 1:
                name = "th_out"

            code += "const " + CodeGenerator().generateArray("float", name,
                                                             T) + "\n"
        code += "\n"

        # generate the required ann-specific methods
        code += self.sigmoid() + "\n\n"
        code += self.activate() + "\n\n"
        if not self.useUnrolling:
            code += self.mult() + "\n\n"

        if self.modelType == Type.CLASSIFICATION:
            code += CodeGenerator().findMax("float") + "\n\n"

        # generate the callable method
        header = ["_" + key for key in self.inputLayer]
        code += resultType + " predict(" + ", ".join(
            ["float " + x for x in header]) + ")\n{\n"

        # input layer
        for i in range(0, len(header)):
            header[i] = self.norm(header[i], normed[i + 1][0],
                                  normed[i + 1][1])
        code += "\t" + CodeGenerator().generateArray("float", "in",
                                                     header) + "\n\n"

        # activate the layers
        if self.useUnrolling:
            code += self.activateLayersWithUnrolling(normed)
        else:
            code += self.activateLayers(header, normed)

        code += "}\n"

        #code += CodeGenerator().generateDummyMain(len(attributes)-1)

        FileHandler().write(code, _file)
コード例 #7
0
from models.m5.M5 import M5
from experiment.Experiment import Experiment
from code.CodeGenerator import CodeGenerator
from data.CSV import CSV
from code.Arduino import Arduino

# define the training data set and set up the model
training = "../examples/mnoA.csv"
model = M5()

# perform a 10-fold cross validation
e = Experiment(training, "example_arduino")
e.regression([model], 10)

# export the raw C++ code
codeFile = e.path("arduino.cpp")
CodeGenerator().export(training, model, codeFile)

# create a dummy Arduino project which executes the model
csv = CSV()
csv.load(training)
attributes = csv.findAttributes(0)

mem = Arduino().run(codeFile, "float", len(attributes) - 1)
print(mem)

# all results are written to results/example_arduino/