def __init__(self, args, train=True): super().__init__() self.args = args self.train = train self.dir_hr = join(args.dir_datasets + '/DIV2K/HR') self.dir_lr = [ join(args.dir_datasets + '/DIV2K/LR/X' + str(scale)) for scale in args.upscale ] self.n_train = args.n_train self.n_test = 20 if train: self.images_hr = [ entry.path for entry in scandir(self.dir_hr) if is_image_file(entry.name) ][:self.n_train] else: self.images_hr = [ entry.path for entry in scandir(self.dir_hr) if is_image_file(entry.name) ][self.n_train:self.n_train + self.n_test] self.images_lr = self._get_lr()
def __init__(self, args): super().__init__() self.args = args self.dir_hr = join(args.dir_datasets, args.data_train + '/HR') self.images_hr = [ entry.path for entry in scandir(self.dir_hr) if is_image_file(entry.name) ]
def __init__(self, args): super().__init__() self.upscale = args.upscale self.dir_hr = join(args.dir_datasets, args.data_test + '/HR') self.dir_lr = [ join(args.dir_datasets, args.data_test + '/LR/X' + str(scale)) for scale in self.upscale ] self.images_hr = [ entry.path for entry in scandir(self.dir_hr) if is_image_file(entry.name) ] self.images_lr = self._get_lr()
def __init__(self, opt): base_dir = opt.train_dir #self.use_npy = opt.use_npy #if self.use_npy: # low_dir = os.path.join(base_dir, 'low.npy') # high_dir = os.path.join(base_dir, 'low_avg.npy') low_dir = os.path.join(base_dir, 'Low') high_dir = os.path.join(base_dir, 'Low_avg') self.dsets = {} #if self.use_npy: # self.dsets['low'] = np.load(low_dir) # self.dsets['high'] = np.load(high_dir) self.dsets['low'] = [ os.path.join(high_dir, x) for x in os.listdir(low_dir) if is_image_file(x) ] self.dsets['high'] = [ os.path.join(high_dir, x) for x in os.listdir(high_dir) if is_image_file(x) ]
def __init__(self, args): super().__init__() self.args = args self.dir_demo = join(args.dir_datasets, args.data_test) self.images_demo = [entry.path for entry in scandir(self.dir_demo) if is_image_file(entry.name)]