コード例 #1
0
 def setUp(self) -> None:
     config_file = copy.deepcopy(cfg)
     args = cmd(
         sub="basic/exp7",
         train_period=["1990-01-01", "2000-01-01"],
         test_period=["1980-01-01", "1990-01-01"],
         quick_data=0,
         cache_state=1,
         flow_screen={
             'missing_data_ratio': 1,
             'zero_value_ratio': 1
         },
         gage_id_file=
         "/mnt/data/owen411/code/hydro-anthropogenic-lstm/example/output/gages/basic/exp37/3557basins_ID_NSE_DOR.csv"
     )
     update_cfg(config_file, args)
     self.config_data = GagesConfig(config_file)
     self.test_epoch = 300
コード例 #2
0
 def setUp(self) -> None:
     self.config_file = copy.deepcopy(cfg)
     args = cmd(sub="ecoregion/exp23", cache_state=1, pub_plan=3, plus=1, split_num=2)
     update_cfg(self.config_file, args)
     self.random_seed = self.config_file.RANDOM_SEED
     self.test_epoch = self.config_file.TEST_EPOCH
     self.gpu_num = self.config_file.CTX
     train_mode = self.config_file.TRAIN_MODE
     cache = self.config_file.CACHE.STATE
     self.pub_plan = self.config_file.PUB_PLAN
     self.plus = self.config_file.PLUS
     print("train and test for PUB: \n")
     self.split_num = self.config_file.SPLIT_NUM
     self.eco_names = [("ECO2_CODE", 5.2), ("ECO2_CODE", 5.3), ("ECO2_CODE", 6.2), ("ECO2_CODE", 7.1),
                       ("ECO2_CODE", 8.1), ("ECO2_CODE", 8.2), ("ECO2_CODE", 8.3), ("ECO2_CODE", 8.4),
                       ("ECO2_CODE", 8.5), ("ECO2_CODE", 9.2), ("ECO2_CODE", 9.3), ("ECO2_CODE", 9.4),
                       ("ECO2_CODE", 9.5), ("ECO2_CODE", 9.6), ("ECO2_CODE", 10.1), ("ECO2_CODE", 10.2),
                       ("ECO2_CODE", 10.4), ("ECO2_CODE", 11.1), ("ECO2_CODE", 12.1), ("ECO2_CODE", 13.1)]
     self.config_data = GagesConfig(self.config_file)
コード例 #3
0
    def setUp(self) -> None:
        """before all of these, natural flow model need to be generated by config.ini of gages dataset, and it need
        to be moved to right dir manually """

        config_file = copy.deepcopy(cfg)
        args = cmd(
            sub="basic/exp7",
            train_period=["1990-01-01", "2000-01-01"],
            test_period=["1980-01-01", "1990-01-01"],
            quick_data=0,
            cache_state=1,
            flow_screen={
                'missing_data_ratio': 1,
                'zero_value_ratio': 1
            },
            gage_id_file=
            "/mnt/data/owen411/code/hydro-anthropogenic-lstm/example/output/gages/basic/exp37/3557basins_ID_NSE_DOR.csv"
        )
        update_cfg(config_file, args)
        self.config_data = GagesConfig(config_file)
        self.test_epoch = 300
コード例 #4
0
 def test_show_multi_exps_results(self):
     periods = [["1980-01-01", "1990-01-01"], ["1990-01-01", "2000-01-01"],
                ["2000-01-01", "2010-01-01"], ["2010-01-01", "2020-01-01"]]
     train_test_period_pairs = list(itertools.permutations(periods, 2))
     sub_lst = [
         "basic/exp6", "basic/exp46", "basic/exp47", "basic/exp7",
         "basic/exp37", "basic/exp1", "basic/exp48", "basic/exp8",
         "basic/exp5", "basic/exp49", "basic/exp50", "basic/exp9"
     ]
     exp_lst = [["basic_exp6"], ["basic_exp46"], ["basic_exp47"],
                ["basic_exp7"], ["basic_exp37"], ["basic_exp1"],
                ["basic_exp48"], ["basic_exp8"], ["basic_exp5"],
                ["basic_exp49"], ["basic_exp50"], ["basic_exp9"]]
     for i in range(len(exp_lst)):
         config_file = copy.deepcopy(cfg)
         args = cmd(
             sub=sub_lst[i],
             train_period=train_test_period_pairs[i][0],
             train_mode=0,
             test_period=train_test_period_pairs[i][1],
             quick_data=0,
             cache_state=1,
             flow_screen={
                 'missing_data_ratio': 1,
                 'zero_value_ratio': 1
             },
             te=300,
             gage_id_file=
             "/mnt/data/owen411/code/hydro-anthropogenic-lstm/example/output/gages/basic/exp37/3557basins_ID_NSE_DOR.csv"
         )
         update_cfg(config_file, args)
         config_data = GagesConfig(config_file)
         test_epoch = config_data.config_file.TEST_EPOCH
         inds_df, pred_mean, obs_mean = load_ensemble_result(
             config_file, exp_lst[i], test_epoch, return_value=True)
         hydro_logger.info("the median NSE of %s is %s", sub_lst[i],
                           inds_df["NSE"].median())
コード例 #5
0
# python gages_dor_analysis.py --sub dam/exp5 --ctx 0 --attr_screen {\"DOR\":0.02} --rs 123
# python gages_dor_analysis.py --sub dam/exp6 --ctx 0 --attr_screen {\"DOR\":0.02} --rs 12345
# python gages_dor_analysis.py --sub dam/exp13 --ctx 0 --attr_screen {\"DOR\":0.02} --rs 111
# python gages_dor_analysis.py --sub dam/exp16 --ctx 0 --attr_screen {\"DOR\":0.02} --rs 1111
# python gages_dor_analysis.py --sub dam/exp19 --ctx 0 --attr_screen {\"DOR\":0.02} --rs 11111

# python gages_dor_analysis.py --sub dam/exp12 --ctx 0 --attr_screen {\"DOR\":0.003}
# python gages_dor_analysis.py --sub dam/exp18 --ctx 0 --attr_screen {\"DOR\":0.08}
# python gages_dor_analysis.py --sub dam/exp33 --ctx 0 --attr_screen {\"DOR\":1}
# python gages_dor_analysis.py --sub dam/exp34 --ctx 0 --attr_screen {\"DOR\":-0.003}
# python gages_dor_analysis.py --sub dam/exp35 --ctx 0 --attr_screen {\"DOR\":-0.08}
# python gages_dor_analysis.py --sub dam/exp36 --ctx 0 --attr_screen {\"DOR\":-1}

# python gages_dor_analysis.py --sub dam/exp37 --ctx 0 --attr_screen {\"DOR\":-0.1} --cache_state 1
# python gages_dor_analysis.py --sub dam/exp38 --ctx 0 --attr_screen {\"DOR\":0.1} --cache_state 1
# python gages_dor_analysis.py --sub dam/exp40 --ctx 0 --attr_screen {\"DOR\":-0.1} --rs 123
# python gages_dor_analysis.py --sub dam/exp41 --ctx 0 --attr_screen {\"DOR\":0.1} --rs 123
# python gages_dor_analysis.py --sub dam/exp43 --ctx 0 --attr_screen {\"DOR\":-0.1} --rs 12345
# python gages_dor_analysis.py --sub dam/exp44 --ctx 0 --attr_screen {\"DOR\":0.1} --rs 12345
# python gages_dor_analysis.py --sub dam/exp46 --ctx 0 --attr_screen {\"DOR\":-0.1} --rs 111
# python gages_dor_analysis.py --sub dam/exp47 --ctx 0 --attr_screen {\"DOR\":0.1} --rs 111
# python gages_dor_analysis.py --sub dam/exp49 --ctx 0 --attr_screen {\"DOR\":-0.1} --rs 1111
# python gages_dor_analysis.py --sub dam/exp50 --ctx 0 --attr_screen {\"DOR\":0.1} --rs 1111
# python gages_dor_analysis.py --sub dam/exp52 --ctx 0 --attr_screen {\"DOR\":-0.1} --rs 11111
# python gages_dor_analysis.py --sub dam/exp53 --ctx 0 --attr_screen {\"DOR\":0.1} --rs 11111
if __name__ == '__main__':
    print("Begin\n")
    args = cmd()
    dor_lstm(args)
    print("End\n")
コード例 #6
0
class TestDataClassCase(unittest.TestCase):
    config_file = copy.deepcopy(cfg)
    args = cmd(sub="basic/exp7", train_period=["2010-01-01", "2020-01-01"],
               test_period=["1995-01-01", "1996-10-01"], quick_data=0, cache_state=1,
               flow_screen={'missing_data_ratio': 0, 'zero_value_ratio': 1},
               gage_id=["01011000", "01013500", "01015800", "01017000", "01019000", "01022500", "01030500", "01031500",
                        "01034000", "01034500", "01038000", "01042500", "01046500", "01047000", "01048000", "01049000",
                        "01049500", "01052500", "01053500", "01054000", ])
    # gage_id_file="/mnt/data/owen411/code/hydro-anthropogenic-lstm/example/output/gages/basic/exp37/3557basins_ID_NSE_DOR.csv")
    update_cfg(config_file, args)
    data_source_dump = os.path.join(config_file.TEMP_PATH, 'data_source.txt')

    def setUp(self):
        self.config_data = GagesConfig(self.config_file)
        print('setUp...')

    def test_data_source(self):
        # serialize_json(self.config_data.model_dict, self.model_dict_file)
        source_data = GagesSource(self.config_data, self.config_data.model_dict["data"]["tRangeTrain"],
                                  screen_basin_area_huc4=False)
        dir_temp = source_data.all_configs["temp_dir"]
        if not os.path.isdir(dir_temp):
            os.mkdir(dir_temp)
        my_file = os.path.join(dir_temp, 'data_source.txt')
        serialize_pickle(source_data, my_file)

    def test_data_model(self):
        gages_model = GagesModels(self.config_data, screen_basin_area_huc4=False)
        save_datamodel(gages_model.data_model_train, data_source_file_name='data_source.txt',
                       stat_file_name='Statistics.json', flow_file_name='flow', forcing_file_name='forcing',
                       attr_file_name='attr', f_dict_file_name='dictFactorize.json',
                       var_dict_file_name='dictAttribute.json', t_s_dict_file_name='dictTimeSpace.json')
        save_datamodel(gages_model.data_model_test, data_source_file_name='test_data_source.txt',
                       stat_file_name='test_Statistics.json', flow_file_name='test_flow',
                       forcing_file_name='test_forcing', attr_file_name='test_attr',
                       f_dict_file_name='test_dictFactorize.json', var_dict_file_name='test_dictAttribute.json',
                       t_s_dict_file_name='test_dictTimeSpace.json')
        print("read and save data model")

    def test_usgs_screen_streamflow(self):
        source_data = unserialize_pickle(self.data_source_dump)
        data_flow = source_data.read_usgs()
        usgs_id = source_data.all_configs["flow_screen_gage_id"]
        data_flow, usgs_id, t_range_list = source_data.usgs_screen_streamflow(data_flow, usgs_ids=usgs_id)
        print(data_flow)
        print(usgs_id)
        print(t_range_list)

    def test_read_forcing(self):
        source_data = unserialize_pickle(self.data_source_dump)
        usgs_id = ["0208925200"]
        # usgs_id = ["05481650"] + ["01013500", "01022500", "01030500", "01031500", "01047000", "01052500", "01054200",
        #                           "01055000", "01057000", "01073000"] + ['03144816', '03145000', '03156000', '03157000',
        #                                                                  '03157500', '03219500', '03220000', '03221000',
        #                                                                  '03223000', '03224500', '03225500', '03226800',
        #                                                                  '02383000', '02383500', '02384500', '02385170',
        #                                                                  '02385500', '02385800', '02387000', '02387500',
        #                                                                  '02387600', '02388300', '02388320', '02388350',
        #                                                                  '02388500']
        usgs_id.sort()
        t_range_list = hydro_time.t_range_days(["2000-01-01", "2020-01-01"])
        forcing_data = source_data.read_forcing(usgs_id, t_range_list)
        print(forcing_data)

    def test_read_usgs_gage(self):
        source_data = unserialize_pickle(self.data_source_dump)
        t_range_list = hydro_time.t_range_days(["1995-10-01", "2000-10-01"])
        source_data.read_usge_gage("11", '07311600', t_range_list)

    def test_read_usgs(self):
        source_data = unserialize_pickle(self.data_source_dump)
        source_data.read_usgs()

    def test_read_attr(self):
        config_dir = definitions.CONFIG_DIR
        config_file = os.path.join(config_dir, "landuse/config_exp2.ini")
        subdir = r"landuse/exp2"
        config_data = GagesConfig.set_subdir(config_file, subdir)
        data_source_dump = os.path.join(config_data.data_path["Temp"], 'data_source.txt')
        source_data = unserialize_pickle(data_source_dump)
        usgs_id_lst = source_data.all_configs['flow_screen_gage_id']
        print(all(x < y for x, y in zip(usgs_id_lst, usgs_id_lst[1:])))
        var_lst = source_data.all_configs['attr_chosen']
        source_data.read_attr(usgs_id_lst, var_lst, is_return_dict=True)