コード例 #1
0
 def transform_tr(self, sample):
     train_transforms = list()
     train_transforms.append(tr.Resize(self.cfg.LOAD_SIZE))
     train_transforms.append(tr.RandomScale(self.cfg.RANDOM_SCALE_SIZE))
     train_transforms.append(
         tr.RandomCrop(self.cfg.FINE_SIZE, pad_if_needed=True, fill=0))
     train_transforms.append(tr.RandomRotate())
     train_transforms.append(tr.RandomGaussianBlur())
     train_transforms.append(tr.RandomHorizontalFlip())
     # if self.cfg.TARGET_MODAL == 'lab':
     #     train_transforms.append(tr.RGB2Lab())
     if self.cfg.MULTI_SCALE:
         for item in self.cfg.MULTI_TARGETS:
             self.ms_targets.append(item)
         train_transforms.append(
             tr.MultiScale(size=self.cfg.FINE_SIZE,
                           scale_times=self.cfg.MULTI_SCALE_NUM,
                           ms_targets=self.ms_targets))
     train_transforms.append(tr.ToTensor())
     train_transforms.append(
         tr.Normalize(mean=self.cfg.MEAN,
                      std=self.cfg.STD,
                      ms_targets=self.ms_targets))
     composed_transforms = transforms.Compose(train_transforms)
     return composed_transforms(sample)
コード例 #2
0
 def transform_tr(self, sample):
     train_transforms = list()
     # train_transforms.append(tr.RandomScale(base_size=self.cfg.LOAD_SIZE, crop_size=self.cfg.FINE_SIZE))
     train_transforms.append(tr.RandomScale(self.cfg.RANDOM_SCALE_SIZE))
     train_transforms.append(tr.Resize(self.cfg.LOAD_SIZE))
     train_transforms.append(
         tr.RandomCrop(self.cfg.FINE_SIZE, pad_if_needed=True, fill=0))
     train_transforms.append(tr.RandomGaussianBlur())
     train_transforms.append(tr.RandomHorizontalFlip())
     train_transforms.append(tr.ToTensor())
     train_transforms.append(
         tr.Normalize(mean=self.cfg.MEAN,
                      std=self.cfg.STD,
                      ms_targets=self.ms_targets))
     composed_transforms = transforms.Compose(train_transforms)
     return composed_transforms(sample)