コード例 #1
0
def searchByCourse(search):
    data, search = getData(), search.upper()
    realData = data['results']
    courses = realData
    return {
        'results':
        {course: realData[course]
         for course in courses if search in course}
    }
コード例 #2
0
ファイル: diversifier.py プロジェクト: TamimSha/moomAI
def diversifier(rotate=False):

    files = getData()
    if (files == 0):
        return 0

    path = files['output'] + files['number']
    path_frames = files['path'] + files['number']

    if not os.path.exists(path):
        os.mkdir(path)
    if not os.path.exists(path + "full/"):
        os.mkdir(path + "full/")
    if not os.path.exists(path + "half/"):
        os.mkdir(path + "half/")
    if not os.path.exists(path + "quarter/"):
        os.mkdir(path + "quarter/")

    imageNames = getImageNames(path_frames)
    threads = []
    NUM_THREADS = 16
    length = len(imageNames)

    for i in range(0, NUM_THREADS):
        imageRotator = ImageRotator(
            imageNames[i * length // NUM_THREADS:(i + 1) * length //
                       NUM_THREADS], path_frames,
            files['output'] + files['number'], 1, 2)
        threads.append(imageRotator)
    for t in threads:
        t.start()

    try:
        with progressbar.ProgressBar(max_value=100.0) as bar:
            active = True
            while (active):
                isDead = True
                progress = 0.
                for t in threads:
                    isDead = isDead and not t.isAlive()
                    progress += t.getProgress()
                if (isDead):
                    active = False
                progress = min(round(progress / NUM_THREADS, 2), 100)
                bar.update(progress)
                time.sleep(0.1)
    except KeyboardInterrupt:
        for t in threads:
            t.kill()
            t.join()
        return 0

    for t in threads:
        t.join()

    return 1
コード例 #3
0
def searchBySubject(search):
    print(search)
    data = getData()
    realData = data['results']
    courses = realData.keys()
    data = {
        'results': {
            course: realData[course]
            for course in courses
            if containsSubjects(search, str(realData[course]))
        }
    }
    return data
コード例 #4
0
def video_renderer():

    files = getData()
    if (files == 0):
        return 0

    path = files['path'] + files['number']
    if not os.path.exists(path):
        os.mkdir(path)

    threads = []
    fileNum = files['count']

    for i in range(0, fileNum):
        frameRenderer = FrameRenderer(
            files['files'][i]['name'] + "_", path, files['location'] +
            files['files'][i]['name'] + files['files'][i]['type'],
            files['starting'], files['ending'], files['resolution'])
        threads.append(frameRenderer)

    for t in threads:
        if (t.open):
            t.start()

    try:
        with progressbar.ProgressBar(max_value=100.0) as bar:
            active = True
            while (active):
                isDead = True
                progress = 0.
                for t in threads:
                    isDead = isDead and not t.isAlive()
                    progress += t.getProgress()
                if (isDead):
                    active = False
                progress = min(round(100.0 * progress / fileNum, 2), 100)
                #progress = progress if (progress < 100) else 100.0
                bar.update(progress)
                time.sleep(0.1)
    except KeyboardInterrupt:
        for t in threads:
            t.kill()
            t.join()
        return 0

    for t in threads:
        t.join()

    return 1
コード例 #5
0
from data.data import getData, fetchSubjectCodes, fetchSchools
from flask import Flask
from flask_restful import Resource, Api
from flask_cors import CORS
import re

app = Flask(__name__)
CORS(app)
api = Api(app)
data = getData()


def containsSubjects(search, string):
    codes = fetchSubjectCodes()
    subjects = search.split('+')
    for i in subjects:
        if not re.search(codes[i].lower(), string.lower()):
            return False
    return True


def searchByCourse(search):
    data, search = getData(), search.upper()
    realData = data['results']
    courses = realData
    return {
        'results':
        {course: realData[course]
         for course in courses if search in course}
    }
コード例 #6
0
ファイル: frame_eraser.py プロジェクト: TamimSha/moomAI
def frame_eraser():
    files = getData()
    if (files == 0):
        return 0

    path = files['path'] + files['number']

    resolution_x = files['resolution'][0]
    resolution_y = files['resolution'][1]

    global BATCH_SIZE
    BATCH_SIZE = files['batch_size']

    global NUM_THREADS
    NUM_THREADS = 16
    imageNames = __getImageNames(path)

    for batch in range(0, math.floor(len(imageNames) / BATCH_SIZE) + 1):
        print(
            f"\nBatch: {batch + 1} of {math.floor(len(imageNames) / BATCH_SIZE) + 1}"
        )
        batch_host = np.empty(0, dtype=object)
        threads = []
        start = batch * BATCH_SIZE
        end = (batch + 1) * BATCH_SIZE
        if (end > len(imageNames)):
            end = len(imageNames)
        imageName_Batch = imageNames[start:end]
        batch_length = len(imageName_Batch)
        threadBatch = math.floor(batch_length / NUM_THREADS)

        for i in range(0, NUM_THREADS):
            if i == NUM_THREADS - 1:
                imageLoader = ImageLoader(
                    imageName_Batch[i * threadBatch:batch_length], path)
            else:
                imageLoader = ImageLoader(
                    imageName_Batch[i * threadBatch:(i + 1) * threadBatch],
                    path)
            threads.append(imageLoader)
        for t in threads:
            t.start()
        done = False
        print("Copying from Disk to RAM")
        with progressbar.ProgressBar(max_value=batch_length) as bar:
            while (not done):
                done = all(t.done == True for t in threads)
                progress = 0
                for t in threads:
                    progress += t.progress
                bar.update(progress)
                time.sleep(0.1)

        for t in threads:
            temp = np.copy(t.getBatch())
            batch_host = np.append(batch_host, temp)
        for t in threads:
            t.join()
        batch_device = np.zeros_like(batch_host)
        print("Copying from RAM to GPU")
        with progressbar.ProgressBar(max_value=batch_length) as bar:
            for i in range(0, batch_length):
                batch_device[i] = driver.mem_alloc(batch_host[i].nbytes)  # pylint: disable=no-member, unsupported-assignment-operation
                driver.memcpy_htod(batch_device[i], batch_host[i])  # pylint: disable=no-member
                bar.update(i)

        # CUDA Absolute Image Subtraction
        diffBlock = (8, 8, 3)
        diffGrid = (int(resolution_x / 8), int(resolution_y / 8), 1)

        h_diffImage_int = np.zeros_like(batch_host[0], dtype=np.uint8)
        d_diffImage_int = driver.mem_alloc(h_diffImage_int.nbytes)  # pylint: disable=no-member
        getImgDiff = __module.get_function("cuda_GetImgDiff")

        # CUDA Sum Image
        num_block = int(resolution_x * resolution_y * 3 / 512)
        block = (512, 1, 1)
        grid = (num_block, 1, 1)

        h_sum = np.zeros(num_block, dtype=np.float)
        d_sum = driver.mem_alloc(h_sum.nbytes)  # pylint: disable=no-member
        sumPixels = __module.get_function("cuda_SumPixels")

        # CUDA Int to Float image converstion
        h_diffImage_float = h_diffImage_int.astype(np.float32)  # pylint: disable=no-member
        d_diffImage_float = driver.mem_alloc(h_diffImage_float.nbytes)  # pylint: disable=no-member
        byteToFloat = __module.get_function("cuda_ByteToFloat")

        imagesToDelete = []
        print("Processing")
        pixelSum = 0
        with progressbar.ProgressBar(max_value=batch_length) as bar:
            pivot = 0
            threshold = 2.0e+38
            for i in range(0, batch_length - 1):
                getImgDiff(d_diffImage_int,
                           batch_device[pivot],
                           batch_device[i + 1],
                           np.int32(resolution_x),
                           block=diffBlock,
                           grid=diffGrid)
                byteToFloat(d_diffImage_float,
                            d_diffImage_int,
                            block=block,
                            grid=grid)
                sumPixels(d_diffImage_float, d_sum, block=block, grid=grid)
                driver.memcpy_dtoh(h_sum, d_sum)  # pylint: disable=no-member
                pixelSum = h_sum.sum()

                if (pixelSum > threshold):
                    pivot = i
                else:
                    imagesToDelete.append(i)
                bar.update(i)

        for i in imagesToDelete:
            os.remove(path + imageName_Batch[i])
            pass
        print(f'Deleted: {len(imagesToDelete)} images\n')

        #getImgDiff(d_diffImage_int, batch_device[1000], batch_device[1001], block=diffBlock, grid=diffGrid)
        #driver.memcpy_dtoh(h_diffImage_int, d_diffImage_int)
        #displayImage(h_diffImage_int)
        #byteToFloat(d_diffImage_float, d_diffImage_int, block=block, grid=grid)

        #if batch >= 5:
        #    return

    return 1