def run_perm_test(row, network_index): network_index = int(network_index) network_names = { 0: "visual", 1: "somatomotor", 2: "dorsal_attention", 3: "ventral_attention", 4: "limbic", 5: "fronto_parietal", 6: "default_mode", 7: "subcortical", 8: "cerebellum" } row_array = row.split(';') perm_ind = row_array[0] perm_y = row_array[1] perm_y = np.asarray(perm_y.split(',')).astype(int) analysis_name = network_names[network_index] + '_perm_' + str(perm_ind) project_folder = './perms/' # get data data = IQData() covariates = np.asarray([data.age, data.gender, data.handedness]).T data.load_single_networks(use_cached=True) X = data.networks[network_index] y = data.fsiq del data # run analysis pipe = construct_hyperpipe(analysis_name, project_folder) pipe.groups = y pipe.fit(X, perm_y, **{'covariates': covariates}) os.remove(pipe.output_settings.pretrained_model_filename)
def run_network(network_index): network_index = int(network_index) network_names = { 0: "visual", 1: "somatomotor", 2: "dorsal_attention", 3: "ventral_attention", 4: "limbic", 5: "fronto_parietal", 6: "default_mode", 7: "subcortical", 8: "cerebellum" } analysis_name = network_names[network_index] project_folder = '.' # get data data = IQData() covariates = np.asarray([data.age, data.gender, data.handedness]).T data.load_single_networks(use_cached=False) X = data.networks[network_index] y = data.fsiq del data # run analysis pipe = construct_hyperpipe(analysis_name, project_folder) pipe.fit(X, y, **{'covariates': covariates}) os.remove(pipe.output_settings.pretrained_model_filename)