コード例 #1
0
 def test_complainant_gender_aggregation(self):
     unit = PoliceUnitFactory()
     officer = OfficerFactory()
     allegation1 = AllegationFactory()
     allegation2 = AllegationFactory()
     OfficerHistoryFactory(officer=officer, unit=unit)
     OfficerAllegationFactory(officer=officer,
                              allegation=allegation1,
                              final_finding='SU')
     OfficerAllegationFactory(officer=officer,
                              allegation=allegation2,
                              final_finding='UN')
     ComplainantFactory(allegation=allegation1, gender='F')
     ComplainantFactory(allegation=allegation2, gender='')
     expect(
         sorted(unit.complainant_gender_aggregation,
                key=itemgetter('name'))).to.eq([{
                    'name': 'Female',
                    'count': 1,
                    'sustained_count': 1
                }, {
                    'name': 'Unknown',
                    'count': 1,
                    'sustained_count': 0
                }])
コード例 #2
0
    def test_complainant_genders(self):
        allegation = AllegationFactory()
        ComplainantFactory(gender='F', allegation=allegation)
        expect(allegation.complainant_genders).to.eq(['Female'])

        ComplainantFactory(gender='U', allegation=allegation)
        expect(allegation.complainant_genders).to.eq(['Female', 'Unknown'])
コード例 #3
0
    def test_complainant_races(self):
        allegation = AllegationFactory()
        ComplainantFactory(race='White', allegation=allegation)
        expect(allegation.complainant_races).to.eq(['White'])

        ComplainantFactory(race='White/Hispinic', allegation=allegation)
        expect(allegation.complainant_races).to.eq(['White', 'White/Hispinic'])
コード例 #4
0
    def test_complainant_age_groups(self):
        allegation = AllegationFactory()
        ComplainantFactory(age=32, allegation=allegation)
        expect(allegation.complainant_age_groups).to.eq(['31-40'])

        ComplainantFactory(age=38, allegation=allegation)
        expect(allegation.complainant_age_groups).to.eq(['31-40'])

        ComplainantFactory(age=55, allegation=allegation)
        expect(allegation.complainant_age_groups).to.eq(['31-40', '51+'])

        allegation_no_complainant = AllegationFactory()
        expect(allegation_no_complainant.complainant_age_groups).to.eq(['Unknown'])
コード例 #5
0
    def test_complainant_race_aggregation(self):
        officer = OfficerFactory()

        allegation1 = AllegationFactory()
        allegation2 = AllegationFactory()
        allegation3 = AllegationFactory()
        OfficerAllegationFactory(officer=officer,
                                 allegation=allegation1,
                                 start_date=date(2010, 1, 1),
                                 final_finding='SU')
        OfficerAllegationFactory(officer=officer,
                                 allegation=allegation2,
                                 start_date=date(2011, 1, 1),
                                 final_finding='NS')
        OfficerAllegationFactory(officer=officer,
                                 allegation=allegation3,
                                 start_date=None,
                                 final_finding='NS')
        ComplainantFactory(allegation=allegation1, race='White')
        ComplainantFactory(allegation=allegation2, race='')
        ComplainantFactory(allegation=allegation3, race='White')

        expect(officer.complainant_race_aggregation).to.eq([{
            'name':
            'White',
            'count':
            2,
            'sustained_count':
            1,
            'items': [{
                'year': 2010,
                'count': 1,
                'sustained_count': 1,
                'name': 'White'
            }]
        }, {
            'name':
            'Unknown',
            'count':
            1,
            'sustained_count':
            0,
            'items': [{
                'year': 2011,
                'count': 1,
                'sustained_count': 0,
                'name': 'Unknown'
            }]
        }])
コード例 #6
0
    def test_extract_info_complaint_record_complainant_null_age(self):
        allegation = AllegationFactory()
        ComplainantFactory(allegation=allegation, age=None)
        OfficerAllegationFactory(final_finding='UN',
                                 start_date=date(2000, 1, 2),
                                 allegation=allegation)

        rows = self.extract_data()

        expect(rows).to.have.length(1)
        expect(rows[0]['complaint_records']['facets'][2]).to.eq({
            'name':
            'complainant age',
            'entries': [{
                'name':
                'Unknown',
                'count':
                1,
                'sustained_count':
                0,
                'items': [{
                    'year': 2000,
                    'name': 'Unknown',
                    'count': 1,
                    'sustained_count': 0
                }]
            }]
        })
コード例 #7
0
 def test_complainant_age_aggregation(self):
     unit = PoliceUnitFactory()
     officer = OfficerFactory()
     allegation1 = AllegationFactory()
     allegation2 = AllegationFactory()
     OfficerHistoryFactory(officer=officer, unit=unit)
     OfficerAllegationFactory(officer=officer, allegation=allegation1, final_finding='SU')
     OfficerAllegationFactory(officer=officer, allegation=allegation2, final_finding='UN')
     ComplainantFactory(allegation=allegation1, age=25)
     ComplainantFactory(allegation=allegation2, age=None)
     expect(unit.complainant_age_aggregation).to.eq([{
         'name': '21-30',
         'count': 1,
         'sustained_count': 1
     }, {
         'name': 'Unknown',
         'count': 1,
         'sustained_count': 0
     }])
コード例 #8
0
 def test_complainant_race_aggregation(self):
     unit = PoliceUnitFactory()
     officer = OfficerFactory()
     allegation = AllegationFactory()
     OfficerHistoryFactory(unit=unit, officer=officer)
     OfficerAllegationFactory(officer=officer, allegation=allegation, final_finding='NS')
     ComplainantFactory(allegation=allegation, race='White')
     expect(unit.complainant_race_aggregation).to.eq([{
         'name': 'White',
         'count': 1,
         'sustained_count': 0
     }])
コード例 #9
0
 def test_complainant_gender_aggregation_with_duplicated_allegation(self):
     unit = PoliceUnitFactory()
     officer1 = OfficerFactory()
     officer2 = OfficerFactory()
     allegation = AllegationFactory()
     OfficerHistoryFactory(officer=officer1, unit=unit)
     OfficerHistoryFactory(officer=officer2, unit=unit)
     OfficerAllegationFactory(officer=officer1, allegation=allegation, final_finding='SU')
     OfficerAllegationFactory(officer=officer2, allegation=allegation, final_finding='SU')
     ComplainantFactory(allegation=allegation, gender='F')
     expect(unit.complainant_gender_aggregation).to.eq([{
         'name': 'Female',
         'count': 1,
         'sustained_count': 1
     }])
コード例 #10
0
    def test_return_correct_response(self):
        officer = OfficerFactory(first_name='John', last_name='Hurley')
        OfficerAllegationFactory(allegation=self.allegation, officer=officer)
        complaint = OfficerAllegationFactory(
            allegation__point=Point([0.01, 0.01]),
            allegation__incident_date=datetime(2016, 2, 23, tzinfo=pytz.utc),
            officer=officer,
            allegation_category__category='False Arrest')
        ComplainantFactory(allegation=complaint.allegation,
                           gender='M',
                           race='Black',
                           age='18')

        self.refresh_index()

        response = self.search(self.allegation.crid, {
            'match': 'officers',
            'distance': '10mi'
        })

        expect(response.status_code).to.eq(status.HTTP_200_OK)
        expect(response.data).to.eq({
            'count':
            1,
            'previous':
            None,
            'next':
            None,
            'results': [{
                'crid':
                str(complaint.allegation.crid),
                'coaccused': ['J. Hurley'],
                'category_names': [
                    'False Arrest',
                ],
                'complainants': [{
                    'race': 'Black',
                    'gender': 'Male',
                    'age': 18
                }],
                'point': {
                    'lat': 0.01,
                    'lon': 0.01
                },
                'incident_date':
                '2016-02-23',
            }]
        })
コード例 #11
0
    def test_query_matching_allegation_with_same_officers(self):
        officer = OfficerFactory()
        OfficerAllegationFactory(allegation=self.allegation, officer=officer)
        complaint = OfficerAllegationFactory(allegation__point=Point(
            [0.01, 0.01]),
                                             officer=officer)
        ComplainantFactory(allegation=complaint.allegation,
                           gender='M',
                           race='Black',
                           age='18')
        OfficerAllegationFactory(allegation__point=Point([0.01, 0.01]))

        self.refresh_index()

        response = self.search(self.allegation.crid, {
            'match': 'officers',
            'distance': '1mi'
        })

        expect(response.status_code).to.eq(status.HTTP_200_OK)
        expect(response.data['count']).to.eq(1)
        expect(response.data['results'][0]['crid']).to.eq(
            str(complaint.allegation.crid))
コード例 #12
0
    def test_retrieve_data_range_too_small_cause_no_percentiles(self):

        officer = OfficerFactory(
            tags=[],
            first_name='Kevin', last_name='Kerl', id=123, race='White', gender='M',
            appointed_date=date(2002, 2, 27), rank='PO', resignation_date=date(2017, 12, 27),
            active=ACTIVE_YES_CHOICE, birth_year=1960, complaint_percentile=32.5,
            sustained_count=1, allegation_count=2, discipline_count=1, trr_count=1,
            civilian_compliment_count=1, honorable_mention_count=1, major_award_count=1,
            last_unit_id=1, current_badge='123456'
        )
        allegation = AllegationFactory(incident_date=datetime(2002, 3, 1, tzinfo=pytz.utc))
        internal_allegation = AllegationFactory(
            incident_date=datetime(2002, 4, 1, tzinfo=pytz.utc),
            is_officer_complaint=True
        )
        allegation_category = AllegationCategoryFactory(category='Use of Force')
        OfficerHistoryFactory(
            officer=officer, effective_date=datetime(2002, 2, 27, tzinfo=pytz.utc),
            unit=PoliceUnitFactory(id=1, unit_name='CAND', description='')
        )
        ComplainantFactory(allegation=allegation, race='White', age=18, gender='F')
        OfficerBadgeNumberFactory(officer=officer, star='123456', current=True)
        OfficerBadgeNumberFactory(officer=officer, star='789', current=False)
        OfficerAllegationFactory(
            officer=officer, allegation=allegation, allegation_category=allegation_category,
            final_finding='SU', start_date=date(2002, 3, 2), disciplined=True
        )
        OfficerAllegationFactory(
            officer=officer, allegation=internal_allegation,
            final_finding='NS', start_date=date(2002, 3, 2), disciplined=False
        )
        AwardFactory(officer=officer, award_type='Complimentary Letter', start_date=date(2014, 5, 1))
        AwardFactory(officer=officer, award_type='Honored Police Star', start_date=date(2014, 6, 1))
        AwardFactory(officer=officer, award_type='Honorable Mention', start_date=date(2014, 7, 1))
        SalaryFactory(officer=officer, salary=50000, year=2002)
        SalaryFactory(officer=officer, salary=90000, year=2017)
        TRRFactory(officer=officer, trr_datetime=datetime(2002, 3, 1, tzinfo=pytz.utc))

        second_officer = OfficerFactory(
            tags=[],
            first_name='Kevin', last_name='Osborn', id=456, race='Black', gender='M',
            appointed_date=date(2002, 1, 27), resignation_date=date(2017, 12, 27), rank='PO',
            active=ACTIVE_YES_CHOICE, birth_year=1970
        )
        TRRFactory(officer=second_officer, trr_datetime=datetime(2002, 5, 1, tzinfo=pytz.utc))
        TRRFactory(officer=second_officer, trr_datetime=datetime(2002, 12, 1, tzinfo=pytz.utc))

        OfficerFactory(
            tags=[],
            first_name='Kevin', last_name='Edward', id=789, race='Black', gender='M',
            appointed_date=date(2002, 3, 27), resignation_date=date(2017, 12, 27), rank='PO',
            active=ACTIVE_YES_CHOICE, birth_year=1970
        )

        officer_cache_manager.build_cached_columns()
        allegation_cache_manager.cache_data()

        response = self.client.get(reverse('api-v2:officers-mobile-detail', kwargs={'pk': 123}))
        expected_response = {
            'officer_id': 123,
            'unit': {
                'unit_id': 1,
                'unit_name': 'CAND',
                'description': '',
            },
            'date_of_appt': '2002-02-27',
            'date_of_resignation': '2017-12-27',
            'active': 'Active',
            'rank': 'PO',
            'full_name': 'Kevin Kerl',
            'race': 'White',
            'badge': '123456',
            'historic_badges': ['789'],
            'gender': 'Male',
            'birth_year': 1960,
            'sustained_count': 1,
            'unsustained_count': 1,
            'civilian_compliment_count': 1,
            'allegation_count': 2,
            'discipline_count': 1,
            'honorable_mention_count': 1,
            'trr_count': 1,
            'major_award_count': 1,
            'percentile_allegation': '32.5000',
            'percentiles': []
        }
        expect(response.data).to.eq(expected_response)
コード例 #13
0
    def test_extract_info_complaint_record_null_complainant(self):
        officer = OfficerFactory()
        OfficerAllegationFactory(officer=officer,
                                 final_finding='UN',
                                 start_date=date(2000, 1, 2))
        allegation = AllegationFactory()
        ComplainantFactory(allegation=allegation,
                           race='White',
                           gender='M',
                           age=21)
        OfficerAllegationFactory(officer=officer,
                                 allegation=allegation,
                                 final_finding='UN',
                                 start_date=None)

        rows = self.extract_data()

        expect(rows).to.have.length(1)
        expect(rows[0]['complaint_records']['facets'][1:]).to.eq([{
            'name':
            'complainant race',
            'entries': [{
                'name':
                'Unknown',
                'count':
                1,
                'sustained_count':
                0,
                'items': [{
                    'year': 2000,
                    'name': 'Unknown',
                    'count': 1,
                    'sustained_count': 0
                }]
            }, {
                'name':
                'White',
                'count':
                1,
                'sustained_count':
                0,
                'items': [{
                    'year': None,
                    'name': 'White',
                    'count': 1,
                    'sustained_count': 0
                }]
            }]
        }, {
            'name':
            'complainant age',
            'entries': [{
                'name':
                'Unknown',
                'count':
                1,
                'sustained_count':
                0,
                'items': [{
                    'year': 2000,
                    'name': 'Unknown',
                    'count': 1,
                    'sustained_count': 0
                }]
            }, {
                'name':
                '20-30',
                'count':
                1,
                'sustained_count':
                0,
                'items': [{
                    'year': None,
                    'name': '20-30',
                    'count': 1,
                    'sustained_count': 0
                }]
            }]
        }, {
            'name':
            'complainant gender',
            'entries': [{
                'name':
                'Unknown',
                'count':
                1,
                'sustained_count':
                0,
                'items': [{
                    'year': 2000,
                    'name': 'Unknown',
                    'count': 1,
                    'sustained_count': 0
                }]
            }, {
                'name':
                'Male',
                'count':
                1,
                'sustained_count':
                0,
                'items': [{
                    'year': None,
                    'name': 'Male',
                    'count': 1,
                    'sustained_count': 0
                }]
            }]
        }])
コード例 #14
0
    def test_extract_info(self):
        officer = OfficerFactory(id=123,
                                 first_name='Alex',
                                 last_name='Mack',
                                 rank='5',
                                 race='White',
                                 gender='M',
                                 appointed_date=date(2017, 2, 27),
                                 resignation_date=date(2017, 12, 27),
                                 active='Yes',
                                 birth_year=1910,
                                 complaint_percentile=99.8,
                                 honorable_mention_percentile=98,
                                 tags=['Jason VanDyke'])
        TRRFactory(officer=officer,
                   trr_datetime=datetime(2002, 9, 29, tzinfo=pytz.utc))
        SalaryFactory(officer=officer, salary=9000)
        AwardFactory(officer=officer, award_type='Honorable Mention')
        AwardFactory(officer=officer, award_type='Complimentary Letter')
        AwardFactory(officer=officer, award_type='Honored Police Star')
        AwardFactory(officer=officer, award_type='Lambert Tree')
        OfficerHistoryFactory(officer=officer,
                              unit__id=1001,
                              unit__unit_name='001',
                              unit__description='Hyde Park D',
                              effective_date=date(2010, 1, 1),
                              end_date=date(2011, 1, 1))
        OfficerHistoryFactory(officer=officer,
                              unit__id=1002,
                              unit__unit_name='002',
                              unit__description='Tactical',
                              effective_date=date(2011, 1, 2))
        OfficerBadgeNumberFactory(officer=officer, star='123456', current=True)
        OfficerBadgeNumberFactory(officer=officer, star='123', current=False)
        OfficerBadgeNumberFactory(officer=officer, star='456', current=False)

        allegation = AllegationFactory(
            incident_date=datetime(2000, 4, 26, tzinfo=pytz.utc))
        OfficerAllegationFactory(
            officer=officer,
            final_finding='SU',
            start_date=date(2000, 1, 1),
            allegation_category__category='Illegal Search',
            allegation=allegation,
            disciplined=True)
        ComplainantFactory(allegation=allegation,
                           race='White',
                           age=18,
                           gender='M')

        rows = self.extract_data()
        expect(rows).to.have.length(1)
        expect(rows[0]).to.eq({
            'id':
            123,
            'full_name':
            'Alex Mack',
            'unit': {
                'id': 1002,
                'unit_name': '002',
                'description': 'Tactical',
                'long_unit_name': 'Unit 002'
            },
            'rank':
            '5',
            'race':
            'White',
            'badge':
            '123456',
            'badge_keyword':
            '123456',
            'historic_badges': ['123', '456'],
            'historic_badges_keyword': ['123', '456'],
            'historic_units': [{
                'id': 1002,
                'unit_name': '002',
                'description': 'Tactical',
                'long_unit_name': 'Unit 002',
            }, {
                'id': 1001,
                'unit_name': '001',
                'description': 'Hyde Park D',
                'long_unit_name': 'Unit 001',
            }],
            'gender':
            'Male',
            'date_of_appt':
            '2017-02-27',
            'date_of_resignation':
            '2017-12-27',
            'active':
            'Active',
            'birth_year':
            1910,
            'complaint_records': {
                'count':
                1,
                'sustained_count':
                1,
                'items': [{
                    'year': 2000,
                    'count': 1,
                    'sustained_count': 1
                }],
                'facets': [{
                    'name':
                    'category',
                    'entries': [{
                        'name':
                        'Illegal Search',
                        'count':
                        1,
                        'sustained_count':
                        1,
                        'items': [{
                            'year': 2000,
                            'name': 'Illegal Search',
                            'count': 1,
                            'sustained_count': 1
                        }]
                    }]
                }, {
                    'name':
                    'complainant race',
                    'entries': [{
                        'name':
                        'White',
                        'count':
                        1,
                        'sustained_count':
                        1,
                        'items': [{
                            'year': 2000,
                            'name': 'White',
                            'count': 1,
                            'sustained_count': 1
                        }]
                    }]
                }, {
                    'name':
                    'complainant age',
                    'entries': [{
                        'name':
                        '<20',
                        'count':
                        1,
                        'sustained_count':
                        1,
                        'items': [{
                            'year': 2000,
                            'name': '<20',
                            'count': 1,
                            'sustained_count': 1
                        }]
                    }]
                }, {
                    'name':
                    'complainant gender',
                    'entries': [{
                        'name':
                        'Male',
                        'count':
                        1,
                        'sustained_count':
                        1,
                        'items': [{
                            'year': 2000,
                            'name': 'Male',
                            'count': 1,
                            'sustained_count': 1
                        }]
                    }]
                }]
            },
            'allegation_count':
            1,
            'complaint_percentile':
            Decimal('99.8'),
            'honorable_mention_count':
            1,
            'honorable_mention_percentile':
            98,
            'has_visual_token':
            False,
            'sustained_count':
            1,
            'discipline_count':
            1,
            'civilian_compliment_count':
            1,
            'trr_count':
            1,
            'major_award_count':
            2,
            'tags': ['Jason VanDyke'],
            'to':
            '/officer/123/alex-mack/',
            'url':
            'http://test.com/officer/alex-mack/123',
            'current_salary':
            9000,
            'unsustained_count':
            0,
            'coaccusals': [],
            'current_allegation_percentile':
            None,
            'percentiles': [],
            'cr_incident_dates': ['2000-04-26'],
            'trr_datetimes': ['2002-09-29'],
            'internal_allegation_percentile':
            None,
            'trr_percentile':
            None,
            'civilian_allegation_percentile':
            None,
        })
コード例 #15
0
ファイル: test_views.py プロジェクト: invinst/CPDBv2_backend
    def test_summary(self):
        officer = OfficerFactory(
            tags=[],
            first_name='Kevin', last_name='Kerl', id=123, race='White', gender='M',
            appointed_date=date(2017, 2, 27), rank='PO', resignation_date=date(2017, 12, 27),
            active=ACTIVE_YES_CHOICE, birth_year=1910, complaint_percentile=32.5,
            sustained_count=1, allegation_count=1, discipline_count=1, trr_count=1,
            civilian_compliment_count=1, honorable_mention_count=1, major_award_count=1,
            last_unit_id=1, current_badge='123456', current_salary=90000, has_unique_name=True
        )
        allegation = AllegationFactory()
        allegation_category = AllegationCategoryFactory(category='Use of Force')
        OfficerHistoryFactory(officer=officer, unit=PoliceUnitFactory(id=1, unit_name='CAND', description=''))
        ComplainantFactory(allegation=allegation, race='White', age=18, gender='F')
        OfficerBadgeNumberFactory(officer=officer, star='123456', current=True)
        OfficerAllegationFactory(
            officer=officer, allegation=allegation, allegation_category=allegation_category,
            final_finding='SU', start_date=date(2000, 1, 1), disciplined=True
        )
        AwardFactory(officer=officer, award_type='Complimentary Letter')
        AwardFactory(officer=officer, award_type='Honored Police Star')
        AwardFactory(officer=officer, award_type='Honorable Mention')
        SalaryFactory(officer=officer, salary=50000, year=2015)
        SalaryFactory(officer=officer, salary=90000, year=2017)
        TRRFactory(officer=officer)

        officer_cache_manager.build_cached_columns()
        allegation_cache_manager.cache_data()

        response = self.client.get(reverse('api-v2:officers-summary', kwargs={'pk': 123}))
        expect(response.status_code).to.eq(status.HTTP_200_OK)
        expected_data = {
            'id': 123,
            'unit': {
                'id': 1,
                'unit_name': 'CAND',
                'description': '',
                'long_unit_name': 'Unit CAND',
            },
            'date_of_appt': '2017-02-27',
            'date_of_resignation': '2017-12-27',
            'active': 'Active',
            'rank': 'PO',
            'full_name': 'Kevin Kerl',
            'race': 'White',
            'badge': '123456',
            'historic_units': [{
                'id': 1,
                'unit_name': 'CAND',
                'description': '',
                'long_unit_name': 'Unit CAND'
            }],
            'gender': 'Male',
            'birth_year': 1910,
            'sustained_count': 1,
            'civilian_compliment_count': 1,
            'allegation_count': 1,
            'discipline_count': 1,
            'honorable_mention_count': 1,
            'to': '/officer/123/kevin-kerl/',
            'url': 'http://cpdb.lvh.me/officer/kevin-kerl/123',
            'current_salary': 90000,
            'trr_count': 1,
            'major_award_count': 1,
            'unsustained_count': 0,
            'percentile_allegation': '32.5000',
            'coaccusals': [],
            'percentiles': [],
            'tags': [],
            'historic_badges': [],
            'has_unique_name': True
        }
        expect(response.data).to.eq(expected_data)
コード例 #16
0
    def test_retrieve(self):
        area = AreaFactory(name='Lincoln Square')
        officer1 = OfficerFactory(
            id=123,
            first_name='Mr',
            last_name='Foo',
            gender='M',
            race='White',
            rank='Officer',
            appointed_date=date(2001, 1, 1),
            birth_year=1993,
            complaint_percentile=4.4,
            civilian_allegation_percentile=1.1,
            internal_allegation_percentile=2.2,
            trr_percentile=3.3,
            allegation_count=1,
            sustained_count=1,
        )
        OfficerBadgeNumberFactory(officer=officer1, star='12345', current=True)
        allegation = AllegationFactory(crid='12345',
                                       point=Point(12, 21),
                                       incident_date=datetime(2002,
                                                              2,
                                                              28,
                                                              tzinfo=pytz.utc),
                                       add1=3510,
                                       add2='Michigan Ave',
                                       city='Chicago',
                                       location='Police Communications System',
                                       beat=area,
                                       is_officer_complaint=False,
                                       summary='Summary',
                                       first_start_date=date(2003, 3, 20),
                                       first_end_date=date(2006, 5, 26))
        ComplainantFactory(allegation=allegation,
                           gender='M',
                           race='Black',
                           age='18')
        VictimFactory(allegation=allegation, gender='M', race='Black', age=53)
        OfficerAllegationFactory(
            officer=officer1,
            allegation=allegation,
            final_finding='SU',
            disciplined=True,
            final_outcome='Separation',
            recc_outcome='10 Day Suspension',
            start_date=date(2003, 3, 20),
            end_date=date(2006, 5, 26),
            allegation_category=AllegationCategoryFactory(
                category='Operation/Personnel Violations',
                allegation_name='Secondary/Special Employment'))
        officer = OfficerFactory(
            id=3,
            first_name='Raymond',
            last_name='Piwinicki',
            appointed_date=date(2001, 5, 1),
            complaint_percentile=4.4,
            trr_percentile=5.5,
            allegation_count=1,
            sustained_count=1,
        )
        OfficerAllegationFactory(officer=officer,
                                 final_finding='SU',
                                 start_date=date(2003, 2, 28),
                                 allegation__incident_date=datetime(
                                     2002, 2, 28, tzinfo=pytz.utc),
                                 allegation__is_officer_complaint=False)
        PoliceWitnessFactory(officer=officer, allegation=allegation)
        investigator = OfficerFactory(
            id=1,
            first_name='Ellis',
            last_name='Skol',
            appointed_date=date(2001, 5, 1),
            complaint_percentile=6.6,
            civilian_allegation_percentile=7.7,
            internal_allegation_percentile=8.8,
            allegation_count=1,
            sustained_count=0,
        )
        OfficerAllegationFactory(officer=investigator,
                                 final_finding='NS',
                                 start_date=date(2003, 2, 28),
                                 allegation__incident_date=datetime(
                                     2002, 2, 28, tzinfo=pytz.utc),
                                 allegation__is_officer_complaint=False)
        investigator = InvestigatorFactory(officer=investigator)
        InvestigatorAllegationFactory(allegation=allegation,
                                      investigator=investigator,
                                      current_rank='IPRA investigator')

        AttachmentFileFactory(tag='TRR',
                              allegation=allegation,
                              title='CR document',
                              id='123456',
                              url='http://cr-document.com/',
                              file_type=MEDIA_TYPE_DOCUMENT)
        AttachmentFileFactory(tag='TRR',
                              allegation=allegation,
                              title='CR arrest report document',
                              url='http://cr-document.com/',
                              file_type=MEDIA_TYPE_DOCUMENT)
        AttachmentFileFactory(tag='AR',
                              allegation=allegation,
                              title='CR document 2',
                              id='654321',
                              url='http://AR-document.com/',
                              file_type=MEDIA_TYPE_DOCUMENT)

        officer_cache_manager.build_cached_columns()
        allegation_cache_manager.cache_data()

        response = self.client.get(
            reverse('api-v2:cr-detail', kwargs={'pk': '12345'}))
        expect(response.status_code).to.eq(status.HTTP_200_OK)
        expect(dict(response.data)).to.eq({
            'crid':
            '12345',
            'most_common_category': {
                'category': 'Operation/Personnel Violations',
                'allegation_name': 'Secondary/Special Employment'
            },
            'coaccused': [{
                'id': 123,
                'full_name': 'Mr Foo',
                'gender': 'Male',
                'race': 'White',
                'rank': 'Officer',
                'birth_year': 1993,
                'recommended_outcome': '10 Day Suspension',
                'final_outcome': 'Separation',
                'final_finding': 'Sustained',
                'category': 'Operation/Personnel Violations',
                'complaint_count': 1,
                'sustained_count': 1,
                'percentile_allegation': '4.4000',
                'percentile_allegation_civilian': '1.1000',
                'percentile_allegation_internal': '2.2000',
                'percentile_trr': '3.3000',
                'disciplined': True
            }],
            'complainants': [{
                'race': 'Black',
                'gender': 'Male',
                'age': 18
            }],
            'victims': [{
                'race': 'Black',
                'gender': 'Male',
                'age': 53
            }],
            'point': {
                'lon': 12.0,
                'lat': 21.0
            },
            'summary':
            'Summary',
            'incident_date':
            '2002-02-28',
            'start_date':
            '2003-03-20',
            'end_date':
            '2006-05-26',
            'address':
            '3510 Michigan Ave, Chicago',
            'location':
            'Police Communications System',
            'beat':
            'Lincoln Square',
            'involvements': [{
                'involved_type': 'investigator',
                'officer_id': 1,
                'full_name': 'Ellis Skol',
                'badge': 'CPD',
                'percentile_allegation': '6.6000',
                'percentile_allegation_civilian': '7.7000',
                'percentile_allegation_internal': '8.8000',
            }, {
                'involved_type': 'police_witness',
                'officer_id': 3,
                'full_name': 'Raymond Piwinicki',
                'allegation_count': 1,
                'sustained_count': 1,
                'percentile_trr': '5.5000',
                'percentile_allegation': '4.4000',
            }],
            'attachments': [{
                'title': 'CR document',
                'file_type': 'document',
                'url': 'http://cr-document.com/',
                'id': '123456',
            }]
        })
コード例 #17
0
 def test_gender_display(self):
     expect(ComplainantFactory(gender='M').gender_display).to.equal('Male')
     expect(
         ComplainantFactory(gender='F').gender_display).to.equal('Female')
     expect(ComplainantFactory(gender='X').gender_display).to.equal('X')
     expect(ComplainantFactory(gender='?').gender_display).to.equal('?')
コード例 #18
0
    def test_emit_correct_format(self):
        allegation = AllegationFactory(
            crid='12345',
            summary='Summary',
            point=Point(12, 21),
            incident_date=datetime(2002, 2, 28, tzinfo=pytz.utc),
            add1='3510',
            add2='Michigan Ave',
            city='Chicago',
            location='Police Building',
            beat=AreaFactory(name='23'),
            is_officer_complaint=False,
            first_start_date=date(2003, 3, 28),
            first_end_date=date(2003, 4, 28),
        )
        coaccused = OfficerFactory(
            id=1,
            first_name='Foo',
            last_name='Bar',
            gender='M',
            race='White',
            birth_year=1986,
            appointed_date=date(2001, 1, 1),
            rank='Officer',
            complaint_percentile=Decimal(0),
            civilian_allegation_percentile=Decimal(1.1),
            internal_allegation_percentile=Decimal(2.2),
            trr_percentile=Decimal(3.3),
            allegation_count=1,
            sustained_count=1,
        )
        OfficerAllegationFactory(
            officer=coaccused,
            allegation=allegation,
            final_finding='SU',
            recc_outcome='Separation',
            final_outcome='Reprimand',
            start_date=date(2003, 3, 28),
            end_date=date(2003, 4, 28),
            allegation_category=AllegationCategoryFactory(
                category='Operation/Personnel Violations',
                allegation_name='NEGLECT OF DUTY/CONDUCT UNBECOMING - ON DUTY'
            ),
            disciplined=True
        )

        ComplainantFactory(allegation=allegation, gender='M', race='White', age=30)
        ComplainantFactory(allegation=allegation, gender='F', race='Black', age=25)
        VictimFactory(allegation=allegation, gender='F', race='Black', age=25)
        VictimFactory(allegation=allegation, gender='M', race='Hispanic', age=40)
        officer = OfficerFactory(
            id=2,
            first_name='Jerome',
            last_name='Finnigan',
            gender='M',
            appointed_date=date(2001, 5, 1),
            complaint_percentile=4.4,
            trr_percentile=5.5,
            allegation_count=1,
            sustained_count=1,
        )
        OfficerAllegationFactory(
            officer=officer,
            final_finding='SU',
            start_date=date(2003, 2, 28),
            allegation__incident_date=datetime(2002, 2, 28, tzinfo=pytz.utc),
            allegation__is_officer_complaint=False
        )
        PoliceWitnessFactory(officer=officer, allegation=allegation)
        investigator = OfficerFactory(
            id=3,
            first_name='German',
            last_name='Lauren',
            appointed_date=date(2001, 5, 1),
            complaint_percentile=6.6,
            civilian_allegation_percentile=7.7,
            internal_allegation_percentile=8.8,
            allegation_count=1,
            sustained_count=0,
        )
        OfficerAllegationFactory(
            officer=investigator,
            final_finding='NS',
            start_date=date(2003, 2, 28),
            allegation__incident_date=datetime(2002, 2, 28, tzinfo=pytz.utc),
            allegation__is_officer_complaint=False
        )
        investigator = InvestigatorFactory(officer=investigator)
        InvestigatorAllegationFactory(
            allegation=allegation,
            investigator=investigator,
            current_rank='IPRA investigator'
        )

        AttachmentFileFactory(
            tag='Other',
            allegation=allegation,
            file_type='document',
            title='CR document',
            url='http://foo.com/',
            preview_image_url='http://web.com/image',
        )
        AttachmentFileFactory(
            tag='Other',
            allegation=allegation,
            file_type='document',
            title='CR document',
            url='http://foo.com/',
            preview_image_url='http://web.com/image',
            show=False
        )
        AttachmentFileFactory(
            allegation=allegation,
            file_type='document',
            tag='OCIR',
            title='CR document',
            url='http://foo.com/',
            preview_image_url='http://web.com/image',
        )

        indexer = CRIndexer()
        rows = list(indexer.get_queryset())
        row = [obj for obj in rows if obj['crid'] == '12345'][0]
        result = indexer.extract_datum(row)
        expect(dict(result)).to.eq({
            'crid': '12345',
            'most_common_category': {
                'category': 'Operation/Personnel Violations',
                'allegation_name': 'NEGLECT OF DUTY/CONDUCT UNBECOMING - ON DUTY'
            },
            'category_names': ['Operation/Personnel Violations'],
            'coaccused': [
                {
                    'id': 1,
                    'full_name': 'Foo Bar',
                    'abbr_name': 'F. Bar',
                    'gender': 'Male',
                    'race': 'White',
                    'rank': 'Officer',
                    'final_finding': 'Sustained',
                    'recc_outcome': 'Separation',
                    'final_outcome': 'Reprimand',
                    'category': 'Operation/Personnel Violations',
                    'subcategory': 'NEGLECT OF DUTY/CONDUCT UNBECOMING - ON DUTY',
                    'start_date': '2003-03-28',
                    'end_date': '2003-04-28',
                    'age': 32,
                    'allegation_count': 1,
                    'sustained_count': 1,
                    'percentile_allegation': Decimal('0'),
                    'percentile_allegation_civilian': Decimal('1.1'),
                    'percentile_allegation_internal': Decimal('2.2'),
                    'percentile_trr': Decimal('3.3'),
                    'disciplined': True
                }
            ],
            'complainants': [
                {'gender': 'Male', 'race': 'White', 'age': 30},
                {'gender': 'Female', 'race': 'Black', 'age': 25}
            ],
            'victims': [
                {'gender': 'Female', 'race': 'Black', 'age': 25},
                {'gender': 'Male', 'race': 'Hispanic', 'age': 40}
            ],
            'summary': 'Summary',
            'point': {'lon': 12.0, 'lat': 21.0},
            'incident_date': '2002-02-28',
            'start_date': '2003-03-28',
            'end_date': '2003-04-28',
            'address': '3510 Michigan Ave, Chicago',
            'location': 'Police Building',
            'beat': '23',
            'involvements': [
                {
                    'involved_type': 'investigator',
                    'officer_id': 3,
                    'full_name': 'German Lauren',
                    'abbr_name': 'G. Lauren',
                    'num_cases': 1,
                    'current_rank': 'IPRA investigator',
                    'percentile_allegation': Decimal('6.6000'),
                    'percentile_allegation_civilian': Decimal('7.7000'),
                    'percentile_allegation_internal': Decimal('8.8000'),
                    'percentile_trr': None
                },
                {
                    'involved_type': 'police_witness',
                    'officer_id': 2,
                    'full_name': 'Jerome Finnigan',
                    'abbr_name': 'J. Finnigan',
                    'gender': 'Male',
                    'race': 'White',
                    'allegation_count': 1,
                    'sustained_count': 1,
                    'percentile_allegation': Decimal('4.4000'),
                    'percentile_allegation_civilian': None,
                    'percentile_allegation_internal': None,
                    'percentile_trr': Decimal('5.5000')
                }
            ],
            'attachments': [
                {
                    'title': 'CR document',
                    'file_type': 'document',
                    'url': 'http://foo.com/',
                    'preview_image_url': 'http://web.com/image'
                }
            ]
        })
コード例 #19
0
    def test_query(self):
        trr_officer_1 = OfficerFactory()
        trr_officer_2 = OfficerFactory()
        pinboard_officer = OfficerFactory()
        other_officer = OfficerFactory()

        pinboard_allegation = AllegationFactory()
        allegation1 = AllegationFactory()
        allegation2 = AllegationFactory()
        allegation3 = AllegationFactory()
        allegation4 = AllegationFactory()
        other_allegation = AllegationFactory()

        OfficerAllegationFactory(allegation=pinboard_allegation,
                                 officer=other_officer)
        OfficerAllegationFactory(allegation=allegation1, officer=trr_officer_1)
        OfficerAllegationFactory(allegation=allegation2, officer=trr_officer_2)
        OfficerAllegationFactory(allegation=allegation3, officer=trr_officer_2)
        OfficerAllegationFactory(allegation=allegation4,
                                 officer=pinboard_officer)

        ComplainantFactory(allegation=pinboard_allegation,
                           gender='M',
                           race='White')
        ComplainantFactory(allegation=pinboard_allegation,
                           gender='F',
                           race='White')
        ComplainantFactory(allegation=pinboard_allegation,
                           gender='F',
                           race='White')
        ComplainantFactory(allegation=pinboard_allegation,
                           gender='F',
                           race='Black')
        ComplainantFactory(allegation=allegation1, gender='X', race='Black')
        ComplainantFactory(allegation=allegation1, gender='F', race='Black')
        ComplainantFactory(allegation=allegation1, gender='X', race='')
        ComplainantFactory(allegation=allegation1,
                           gender='',
                           race='Asian/Pacific')
        ComplainantFactory(allegation=allegation3, gender='F', race='Hispanic')
        ComplainantFactory(allegation=allegation4, gender='M', race='White')
        ComplainantFactory(allegation=other_allegation, gender='M', race='')
        ComplainantFactory(allegation=other_allegation,
                           gender='F',
                           race='Black')

        pinboard_trr1 = TRRFactory(officer=trr_officer_1)
        pinboard_trr2 = TRRFactory(officer=trr_officer_2)

        pinboard = PinboardFactory(trrs=(pinboard_trr1, pinboard_trr2),
                                   allegations=(pinboard_allegation, ),
                                   officers=(pinboard_officer, ))
        query_results = dict(ComplainantsSummaryQuery(pinboard).query())
        expect(list(query_results['race'])).to.eq([{
            'race': 'Black',
            'percentage': 0.3
        }, {
            'race': 'White',
            'percentage': 0.4
        }, {
            'race': 'Hispanic',
            'percentage': 0.1
        }, {
            'race': 'Other',
            'percentage': 0.2
        }])
        expect(list(query_results['gender'])).to.eq([{
            'gender': 'M',
            'percentage': 0.2
        }, {
            'gender': 'F',
            'percentage': 0.5
        }, {
            'gender': 'Unknown',
            'percentage': 0.3
        }])
コード例 #20
0
 def test_complainants(self):
     allegation = AllegationFactory()
     ComplainantFactory(id=1, allegation=allegation)
     expect(allegation.complainants.count()).to.eq(1)
     expect(allegation.complainants[0].id).to.eq(1)
コード例 #21
0
    def test_summary(self):
        unit = PoliceUnitFactory(unit_name='123', description='foo')
        officer = OfficerFactory(race='White', gender='F', birth_year='1980')
        OfficerHistoryFactory(unit=unit, officer=officer, end_date=None)
        allegation = AllegationFactory()
        allegation_category = AllegationCategoryFactory(
            category='Use of Force')
        OfficerAllegationFactory(officer=officer,
                                 allegation=allegation,
                                 allegation_category=allegation_category,
                                 final_finding='SU')
        ComplainantFactory(allegation=allegation,
                           race='Black',
                           age=25,
                           gender='M')

        self.refresh_index()

        response = self.client.get(
            reverse('api-v2:units-summary', kwargs={'pk': '123'}))
        expect(response.data).to.be.eq({
            'unit_name': '123',
            'description': 'foo',
            'member_records': {
                'active_members':
                1,
                'total':
                1,
                'facets': [{
                    'name': 'race',
                    'entries': [{
                        'name': 'White',
                        'count': 1
                    }]
                }, {
                    'name': 'age',
                    'entries': [{
                        'name': '31-40',
                        'count': 1
                    }]
                }, {
                    'name': 'gender',
                    'entries': [{
                        'name': 'Female',
                        'count': 1
                    }]
                }]
            },
            'complaint_records': {
                'count':
                1,
                'sustained_count':
                1,
                'facets': [{
                    'name':
                    'category',
                    'entries': [{
                        'name': 'Use of Force',
                        'count': 1,
                        'sustained_count': 1
                    }]
                }, {
                    'name':
                    'race',
                    'entries': [{
                        'name': 'Black',
                        'count': 1,
                        'sustained_count': 1
                    }]
                }, {
                    'name':
                    'age',
                    'entries': [{
                        'name': '21-30',
                        'count': 1,
                        'sustained_count': 1
                    }]
                }, {
                    'name':
                    'gender',
                    'entries': [{
                        'name': 'Male',
                        'count': 1,
                        'sustained_count': 1
                    }]
                }]
            }
        })