def main(): features, labels = three_dimension.generate_data() three_dimension.show_data(features, labels) pca = PCA(features, 2) res = np.array(pca.process()) # print(res) plt.title('Reduced three dimensions data.') plt.scatter(res[np.argwhere(labels == 0), 0], res[np.argwhere(labels == 0), 1], c='b') plt.scatter(res[np.argwhere(labels == 1), 0], res[np.argwhere(labels == 1), 1], c='g') plt.show() plt.close() dots, labels = two_dimension.generate_data() two_dimension.show_data(dots, labels) pca = PCA(dots, 1) res = np.array(pca.process()) # print(res) plt.title('Reduced two dimensions data.') plt.scatter(res[np.argwhere(labels == 0), 0], np.zeros(shape=res[np.argwhere(labels == 0), 0].shape), c='b') plt.scatter(res[np.argwhere(labels == 1), 0], np.zeros(shape=res[np.argwhere(labels == 0), 0].shape), c='g') plt.show() plt.close()
def main(): features, labels = three_dimension.generate_data() three_dimension.show_data(features, labels) dne = DNE(features, labels, 2) res = np.array(dne.process()) # print(res) plt.title('Reduced three dimensions data.') plt.scatter(res[np.argwhere(labels == 0), 0], res[np.argwhere(labels == 0), 1], c='b') plt.scatter(res[np.argwhere(labels == 1), 0], res[np.argwhere(labels == 1), 1], c='g') plt.show() plt.close()
def main(): marker = 'x' features, labels = three_dimension.generate_data() three_dimension.show_data(features, labels) pca = PCA(copy.deepcopy(features), 2) res = np.array(pca.process()) # print(res) plt.title('PCA') plt.scatter(res[np.argwhere(labels == 0), 0], res[np.argwhere(labels == 0), 1], c='b', marker=marker) plt.scatter(res[np.argwhere(labels == 1), 0], res[np.argwhere(labels == 1), 1], c='g', marker=marker) plt.show() plt.close() dne = DNE(copy.deepcopy(features), labels, 2) res = np.array(dne.process()) # print(res) plt.title('DNE') plt.scatter(res[np.argwhere(labels == 0), 0], res[np.argwhere(labels == 0), 1], c='b', marker=marker) plt.scatter(res[np.argwhere(labels == 1), 0], res[np.argwhere(labels == 1), 1], c='g', marker=marker) plt.show() plt.close() lpp = LPP(copy.deepcopy(features), 2, t=200) res = np.array(lpp.process()) # print(res) plt.title('LPP') plt.scatter(res[np.argwhere(labels == 0), 0], res[np.argwhere(labels == 0), 1], c='b', marker=marker) plt.scatter(res[np.argwhere(labels == 1), 0], res[np.argwhere(labels == 1), 1], c='g', marker=marker) plt.show() plt.close() ldne = LDNE(copy.deepcopy(features), labels, 2, t=10) res = np.array(ldne.process()) # print(res) plt.title('LDNE') plt.scatter(res[np.argwhere(labels == 0), 0], res[np.argwhere(labels == 0), 1], c='b', marker=marker) plt.scatter(res[np.argwhere(labels == 1), 0], res[np.argwhere(labels == 1), 1], c='g', marker=marker) plt.show() plt.close()